Treatment options for TAVR failure

Vinayak Bapat, FRCS.CTh

Cardiac Surgeon and Chair of Cardiothoracic Surgery Minneapolis Heart Institute[®]

Disclosures

• Consultant / Honorarium / Grants

Edwards Lifesciences

Medtronic Inc

Boston Scientific

Abbott

4C

Anteris

TAVI 2019-20

Inoperable, high-risk, Intermediate and Low risk patients

Writing was on the wall

We forgot one thing.....

All biological valves degenerate

In an incense chamber, smoke and perfume are inseparable *Dr. Ionescue*

Durability will need to be quantified for Each Device

- Based on current predictions TAVR will last for 5-10 years
- Hence, if we implant it in
 - A at age 65, or
 - Japan/Korea around age 75

Reintervention for SVD will not be uncommon

Redo TAV

- Basic Expectations
 - Low risk Good hemodynamic results Maintain coronary access No anticoagulation

REDO TAVR REGISTRY

- The Redo-TAVR registry collected data on consecutive patients who underwent redo-TAVR at 37 centers (patients who were considered favorable)
- Patients were classified as:
 - Probable TAVR failure (procedure related; <1 year of index TAVR)
 - Probable THV failure (Prosthesis related; >1 year of index TAVR)
- Median follow-up (post redo-TAVR) was 15 (3 to 36) months

Landes U, JACC 2020

REDO TAVR OUTCOMES

REDO TAVR VALVE PERFORMANCE

CONCLUSION: TAVR IN TAVR APPEARS TO BE SAFE!

IS THAT THE FULL STORY ?!

Minneapolis Heart Institute Foundation

Issues

TAV in SAVR

- All valves circular
- Similar height profile (neo-skirt)
- Leaflet overhang not an issue
- Neo-annulus: anchoring level
- True ID known: sizing easy
- Coronary obstruction risk

TAV in TAVR

- Valves are not fully expanded
- Height profile different (neo-skirt)
- Leaflet overhang variable
- Depth of implant variable
- Anchoring level, Sizing & Coronary obstruction risk are interlinked
- All TAV valves can't be used as 2nd TAV

Redo TAV IS going to be AN ART

MAINTAIN CORONARY PERFUSION MAINTAIN CORONARY ACCESS

CHOOSING/POSITIONING THE SECOND VALVE AVOID PATIENT PROSTHESIS MISMATCH

Important TAV in TAV considerations

- Prevent Coronary obstruction
- Maintaining Coronary access after TAV-in-TAV
- Hemodynamics
- Leaflet overhang? How much is acceptable?
- Sizing of 2nd TAV
- Which 2nd TAVs are compatible

KEY TERMINOLOGY

- Coronary Risk plane (CRP): Level below lowest coronary in relation to Index TAV
- Neo-skirt Plane (NSP): Top level of covered stent after Redo-TAV in relation to the Index TAV
- Coronary risk prediction: Multiple levels (narrowest measurement)
 - VTC: Valve To Coronary distance measured from the valve to coronary ostia
 - VTA: Valve To Aorta distance
 - VTSTJ: Valve to STJ distance
- Leaflet overhang: leaflet of Index TAV hanging over the 2nd TAV

Key points

- Compatibility
- Coronary Risk
- Sizing
- Hemodynamics

Compatibility

1st TAV – 2nd TAV Compatibility

- Usually:
 - Short valves all TAVs can be used
 - Tall valves suprannular design- only short valves can be used
 - Tall valves intrannular design most TAV valves can be used

• BE vs SE:

- When 2nd TAV is BE, it can increase the 1st TAV dimensions and can
- VTA
- When 2nd TAV is SE, it does not impact dimensions but may not fully expand

Combination determines Neo Skirt and Neo skirt plane

Index TAV **Pinned** leaflets + Skirt of Second TAV

oundation

Leaflet Overhang and Coronary Risk

If implanted with no leaflet overhang

Implant depth of Index TAVR matters

Coronary Risk

Example-ER and S3 (for illustration purpose only)

IF A > B: Then lower Implantation will be acceptable in certain cases

Coronary obstruction and Leaflet overhang

What is the best compromise???

Can't Compromise Coronary Flow

Hence, we need Individual Patient Assessment

CRP = Coronary risk plane NSP = Neo skirt plane

Relationship between CRP and NSP

No/Minimal risk to coronaries NSP below CRP Risk to coronaries need assessment NSP above CRP

Coronary Risk Analysis - Measurements

How:

Second TAV = BEV Use Virtual circle equal to Size Selected

Measure from whichever valve is outer most

Coronary Risk Analysis - Measurements

How:

Second TAV = SEV Measure from outer margin of Index TAV

What to measure:

Risk based on NARROWEST MEASUREMENT

Risk classification

Second TAV Sizing

• 3 Ways to Size

In-Vitro Based on Pre-Index native annulus In-Vivo

In-Vitro Sizing Example Sapien #23 Evolut R #26

ind vascular disease

Under-expansion Asymmetric Expansion Higher Incidence of HALT

Case 2

Evolut PRO #29 -> S Ultra #23 Pre-TAV in TAV

In-Vivo Sizing Example Sapien #23 Evolut R #29 SAPIEN Ultra 23 (not 26)

Evolut PRO #29 -> S Ultra #23

Better-expansion Circular Expansion Less Risk of HALT

Choose Size of Second TAV before Coronary Analysis: Why?

Can Redo be Logical

MAINTAIN CORONARY PERFUSION

MAINTAIN CORONARY ACCESS

CHOOSING/POSITIONING THE SECOND VALVE AVOID PATIENT PROSTHESIS MISMATCH

Redo TAV

9:41	· □ ? III.
	Redo TAV 🔳
R	Redo-TAV CT Planning
	Procedural Guide
	Procedure Data & Outcome
=,	Blank CT Summary Report
<u>8</u>	Terminology
æ	Coronary Access after Redo-TAV
ů	Valve-Specific Resources
)8(TAV Explant
Ó	Case of the Month
\odot	More

Steps

1

2

3

4

5

6

7

8

- Index TAV & Measurements
- Identify Coronary Risk Plane
- Select Second TAV
- Choose NSP & Assess NSP/CRP
- Second TAV Sizing
- Coronary Risk Assessment
- Summary Report
- Pre-Index TAV CT Data (Optional)

PCRLondonValves.com

Multi-Center Registry to assess Outcomes based on Systematic CT Analysis and procedure

- 1. In-Vivo Sizing
- 2. Coronary Risk: calculated vs observed
- 3. Hemodynamics according to positioning

APP will be available January 2024

PCRLondonValves.com

Summary

- Familiarize with New Terminology
- Understand TAV designs and compatibility
- Undertake Systematic CT analysis
- Perform Procedure according to CT planning

Better Patient Selection Better Patient Outcomes

