Structural Heart Live Case #1: AM, 82 YO F

Presentation: Progressive fatigue and recurrent syncope with fall, which found to have complete heart block and elevated trans AVG

PMH: Severe AS s/p TF-TAVR with 23mmS3-1 cc in 3/2019, Hypothyroidism, HLD, non-obstructive CAD, complete heart block s/p PPM 9/2023, ICH secondary to fall 9/2023

Medications: Lisinopril, amlodipine, levothyroxine, simvastatin

Labs: Hgb 10.3, PLT 281K, K 4.4, Cr 1.04, INR 1.4

EKG: Atrial-sensed, ventricular paced rhythm

TTE: Severe aortic prosthetic stenosis (PG/MG/EOA/PV = 61/36/0.67/3.91) with minimal PVL, LVEF 70%, mild MR

Transthoracic Echocardiogram

LVEF 70%, Severely aortic prosthetic stenosis with minimal PVL

PG/MG/EOA/PV = 61/36/0.67/3.91

Transesophageal Echocardiogram

Restricted and thickened functional noncoronary & right coronary cusps of TAVR due to valve degeneration

Previous TAVR in 2019

23 mm Sapien3 valve – 1cc with LM protection with coronary wire

Previous TAVR in 2019

23 mm Sapien3 valve – 1cc with LM protection with coronary wire

NSP = Neo skirt plane CRP = Coronary risk plane

Steps Index TAV & Measurements Identify Coronary Risk Plane 3 Select Second TAV Choose NSP & Assess NSP/CRP 5 Second TAV Sizing 6 Coronary Risk Assessment **Summary Report** 8 Pre-Index TAV CT Data (Optional)

Step 1. Index TAV : \$3 #23

	Area (mm2) Diameter	Perimeter (mm)
Outflow	353 (22*21)	67
Waist	304 (20*19)	62
Inflow	348 (22*20)	66

Cardiac CT Analysis

Previous TAVR Inflow & Outflow: Underexpanded valve

Inflow of 23mm S3

Max: 22.0 mm Min: 20.8 mm Mean: 21.4 mm

Perimeter = 67.2 mm

Area = 359 mm^2

Mid Frame of 23mm S3

Max: 20.7 mm Min: 19.2 mm Mean: 19.9 mm

Perimeter = 62.4 mmArea = 309.3 mm^2

Outflow of 23mm S3

Max: 21.8 mm Min: 20.9 mm Mean: 21.3 mm

Perimeter = 67.2 mm

Area = 359 mm^2

Step 2. CRP and its relation to index TAV:

CRP defined as below the LOWEST coronary ostia

Bottom of RCA at Top of commissure tab

Bottom of LCA ~ Top of commissure tab

This case's CRP ~ at Top of commissure tab

Index TAV: 23 mm Sapien 3

Important landmark: Top of Commissure Tab

Top of commissure tab is where the leaflets end = Neo skirt

Cardiac CT Analysis

Narrow VTC to LCA CRP just below NSP

Step 3. Select Second TAV

Step 4. Choose NSP and Assess relation between NSP/CRP

This case:
NSP and CRP nearly same level

Low risk of acute coronary obstruction

Step 5. Second TAV Sizing

	Area (mm2)	Perimeter (mm)
Outflow	353	67
Waist	304	62
Inflow	348	66

→ Average area: 335 mm²

Average perimeter: 65 mm

 $BSA = 1.51 \text{ m}^2$

 $S3 \#20: 0.81 \text{ cm}^2/\text{m}^2 \pmod{PPM}$

S3 #23: 0.96 cm²/m² (no PPM)

IFU for S3

Valve size	Area (mm²)	Area derived diameter (mm)
20	273-345	18.6-21
23	338-430	20.7-23.4
26	430-546	23.4-26.4
29	540-683	26.2-29.5

→ Second TAV

S3 #20 +1cc vs

S3 #23 -1cc?

Evolut #26

Step 6. Coronary risk assessment

Low risk of acute coronary obstruction

Delayed coronary obstruction?

obstruction?
Difficult coronary access
post Redo TAV?

Just in case...

The level of LCA VTC = Top of stent frame

Virtual circle of #20 #23

1.5 mm

Index 23 S3 further expansion by redo TAV?

Cardiac CT Analysis

Moderate commissural misalignment

Aorto-Iliac Bifurcation

Aortic Arch

Planned Redo S3 Position

Summary of Case

Presentation: 82 yo F, with recent intracranial hemorrhage, severe aortic prosthetic stenosis, and potential risk of LM occlusion

TTE: severely aortic prosthetic stenosis (PG/MG/EOA/PV = 61/36/0.67/3.91) with minimal PVL, LVEF 70%, mild MR

Risk mortality: high risk for SAVR with previous TAVR for explant

Course: Patient was evaluated by heart team and recommended TF TAV-in-TAV with LM protection

Plan: TF TAV-in-TAV with a 20mm (+1 cc) Sapien3 Ultra Resilia valve after BAV (with 20mm True Balloon) via right percutaneous femoral arterial access with planned LM snorkel stent for coronary access