

Where will TAVR be in 2030? Who will we be treating?

Eberhard Grube MD, FACC, MSCAI

University Hospital Bonn, Heart Center, Germany
INCOR Heart Institute, São Paulo, Brazil
Stanford University, Palo Alto, California, USA

Financial Disclosure

I, Eberhard Grube have the following financial interest/arrangement that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation

Speaker Bureau/ SAB: Medtronic, Boston Scientific, HighLife, Jena Valve, Protembis

<u>Equity Interest:</u> Cardiovalve, Claret, Shockwave, Valve medical, CardioMech, Millipede, Imperative Care, Pi-Cardia, Ancora, Laminar, ReNiva Medical

TAVR: Future Projections & Expectations

- ☐ improved disease *awareness* and *access* to TAVR
- ☐ Explosive growth in TAVR worldwide
- ☐ Accelerated *innovation* of TAVR platforms and evolving accessory devices (eg, balloon, pm, closure devices, cv protection)
- ☐ Aortic valve remodeling technologies (eg scoring, lithotrypsy)
- Re-defining disease state and *«timing/trigger points»* for therapy
- Realization of new clinical extended indications

Aortic Stenosis Redefined:

Functional classification / New trigger points

Mild AS

Moderate AS
Symptoms -

Bicuspid

NOTION-2
Subanalysis

Moderate AS
Symptoms +

TAVI UNLOAD
Progress/Expand

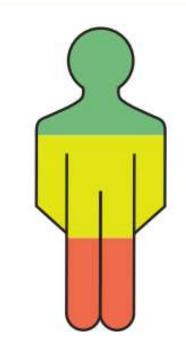
Severe AS
Symptoms -

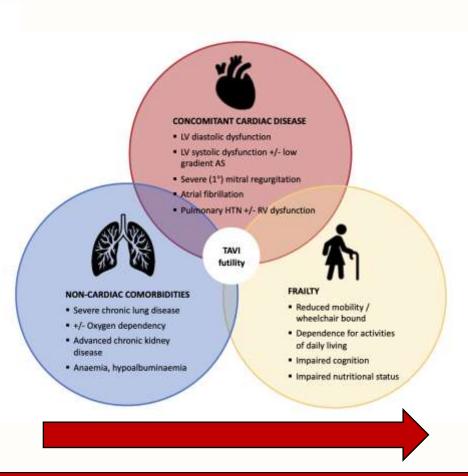
EARLY TAVI EASY AS Severe AS Symptoms +

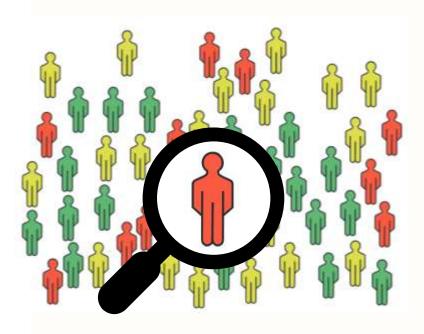
PARTNER/EVOLUT

LOW / INT / HIGH RISK

ACTIVE SURVEILLANCE **TAVR**


2032

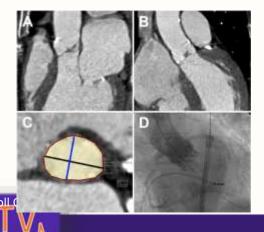

2019


Improved Patient Selection and Disease Awareness

Mean Treatment Difference

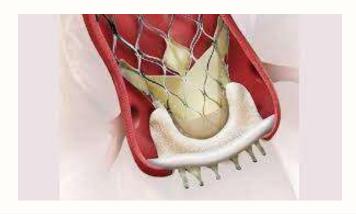
Individual patient outcomes

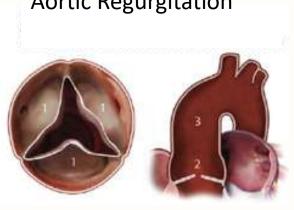
30% of patients undergoing TAVR derive minimal symptom benefit or die within one year


TAVR Lifetime Management of Aortic Disease

Who will we be treating in the Future?

Low Risk


Small Annulus


Bicuspid AS

Valve in Valve

Aortic Regurgitation

Asymptomatic/Moderat AS

TAVR NEXT STEPS I Asymptomatic/Mod AS

Asymptomatic/Moderate AS

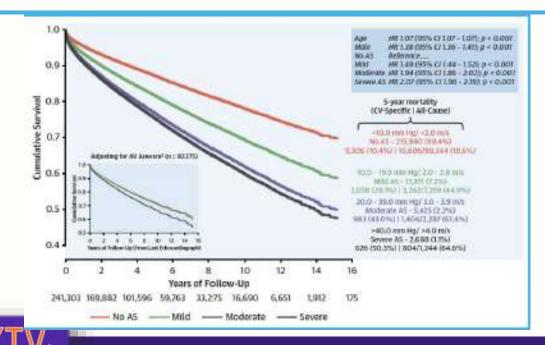
Why are We Targeting Asymptomatic & Moderate Aortic Stenosis?

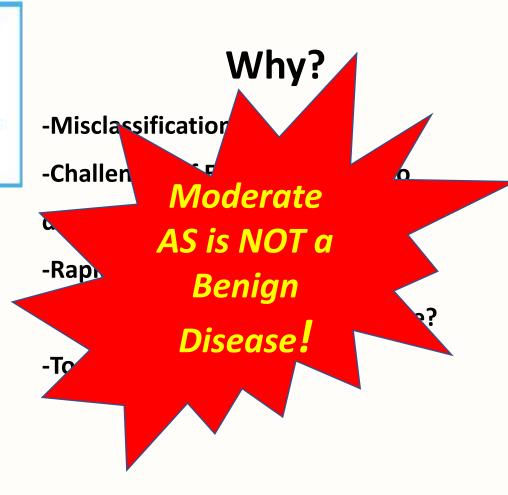
TAVR NEXT STEPS I Mortality in Untreated AS

595,120 Patients With
AS Assessment

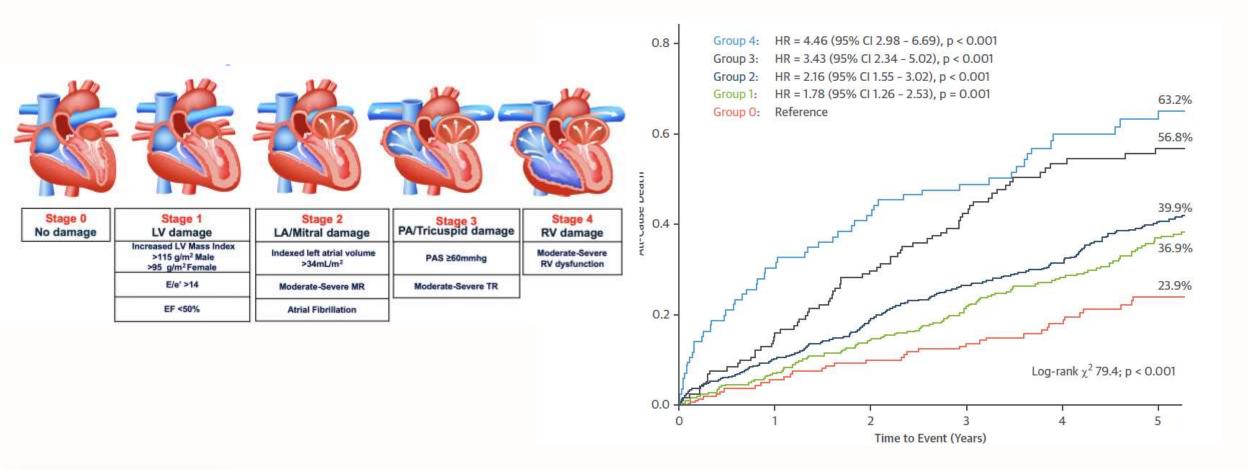
No AS 524,342 (88.1%)

> AS Dx 70,778 (11.9%)


	AS S AHA Dx (86.6%)	everity Intermediate Dx 9,485 (13.4%)	4-Year Treatment Rates With AVR	4-Year Mortality Without AVR
	d AS (48.9%)		1.0%	25.0%
	N	Mild-to-Moderate AS 5,796 (8.2%)	4.2%	29.7%
	rate AS (20.6%)		11.4%	33.5%
	M	oderate-to-Severe A 3,689 (5.2%)	36.7%	45.7%
4400	re AS (17.1%)		60.7%	44.9%

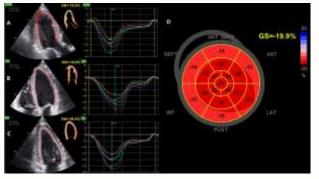


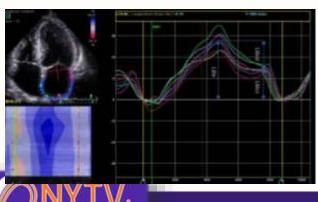
Moderate AS as Bad as Severe AS? Watchful waiting is ingrained in clinical practice


Poor Long-Term Survival in Patients With Moderate Aortic Stenosis

Geoff Strange, PhD,[®] Simon Stewart, PhD,[®] David Celermajer, MD, PhD,[©] David Prior, MBBS, PhD,[©] Gregory M. Scalia, MBBS (Hoss), MMmDSc,[©] Thomas Marwick, MBBS, PhD,[©] Marcus Ilton, MD,[®] Majo Joseph, MBBS,[®] Jim Codde, PhD,[©] David Playford, MBBS, PhD,[©] on behalf of the National Echocardiography Database of Australia contributing sites

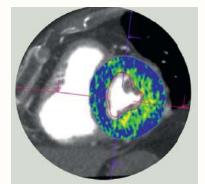
Extent of Cardiac Damage among Moderate AS 5-Year Death; N=1,245 pts.




Earlier Intervention | Challenges in Evaluating Cardiac Function

Multi-modalities to evaluate impact of intervention and enhance prognostic risk stratification

Echocardiography (Baseline and follow-up)

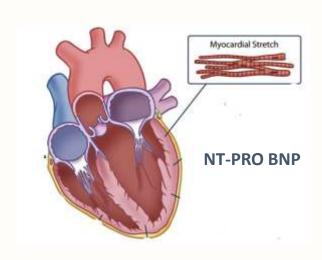


Left
Ventricular
Global
Longitudinal
Strain



Left Atrial Strain

Cardia CT/ MRI (Baseline and Follow Up))



Extra-Cellular Volume

Left
Ventricular
Global
Longitudinal
Strain

Bio-markers (Baseline and follow-up)

Transcatheter AVR Trials in Moderate Aortic Stenosis

TAVR-UNLOAD (n=300)

PROGRESS (n=450-750)

EXPAND II (n=650)

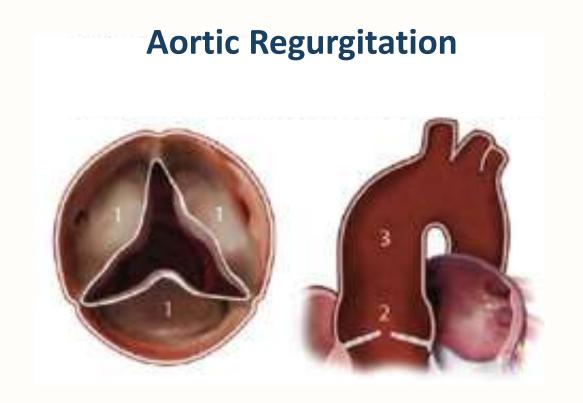
FPI Q4 '21

Q1

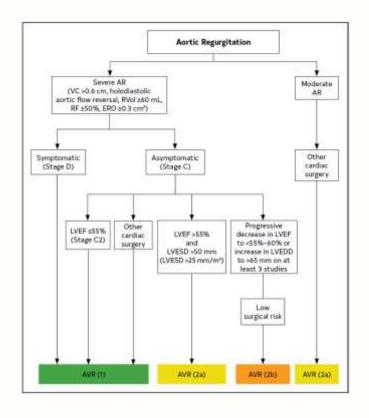
TAVR vs. no TAVR

Mortality, adverse heart failure endpoints
Potential new treatment pathways

FPI Q1 '22


Prediction #1

TAVR will be the treatment of choice for all patients with Severe Asymptomatic severe AS and Moderate Aortic Stenosis



TAVR NEXT STEPS I Aortic Regurgitation

Guidelines for AVR Have Not Changed In Decades

Wait for symptoms... wait for LV dysfunction (EF≤50%)... or wait for severe LV remodeling...

Indications for surgery	Class ^a	Levelb		
A. Severe aortic regurgitation				
Surgery is indicated in symptomatic patients. 57,58,66,67	1	В		
Surgery is indicated in asymptomatic patients with resting LVEF ≤50%. ^{57,58}	I.	В		
Surgery is indicated in patients undergoing CABG or surgery of the ascending aorta or of another valve.	ï	С		
Heart Team discussion is recommended in selected patients ^c in whom aortic valve repair may be a feasible alternative to valve replacement.	Ľ	С		
Surgery should be considered in asymptomatic patients with resting ejection fraction >50% with severe LV dilatation: LVEDD >70 mm or LVESD >50 mm (or LVESD >25 mm/m ² BSA in patients with small body size). 58,66	lla	В		

The Case for Redefining "Moderate" AR

Growing data suggesting VHD guidelines also may recommend treatment too late

ORIGINAL RESEARCH

Do Guideline-Based Indications Result in an Outcome Penalty for Patients With Severe Aortic Regurgitation?

Christophe de Meester, PaD, Bernhard L. Gerber, MD, PaD, David Vancraeynest, MD, PaD,
Anne-Catherine Pouleur, MD, PaD, Philippe Noirhomme, MD, Agnès Pasquet, MD, PaD, Laurent de Kerchove, MD,
Gèbrine El Khoury, MD, Jean-Louis Vanoverschelde, MD, PaD

ORIGINAL INVESTIGATIONS

Outcomes in Chronic Hemodynamically Significant Aortic Regurgitation and Limitations of Current Guidelines

Li-Tan Yang, MD, Hector I. Michelena, MD, Christopher G. Scott, MS, Maurice Enriquez-Sarano, MD, Sorin V. Pislaru, MD, Hartzell V. Schaff, MD, Patricia A. Pellikka, MD

EDITORIAL COMMENT

Aortic Regurgitation: Time to Reassess Timing of Valve Replacement?*

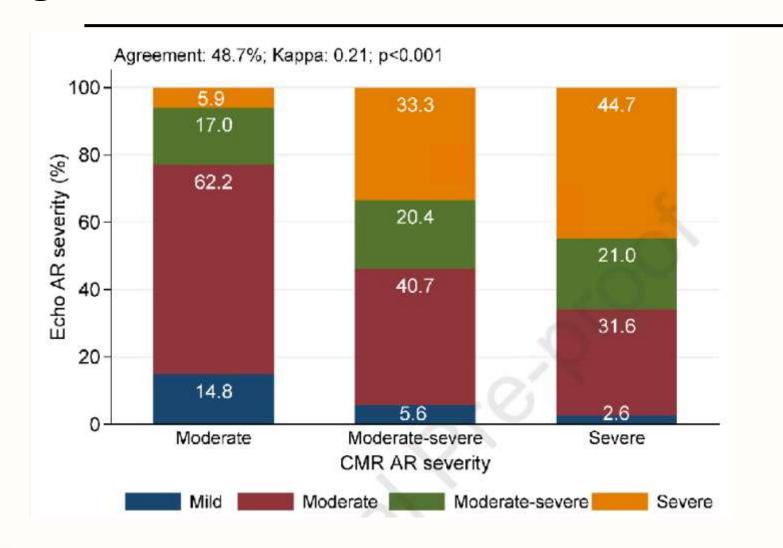
Robert O. Bonow, MD Chicago, Illinois

EDITORIAL COMMENT

In the Eye of the Beholder

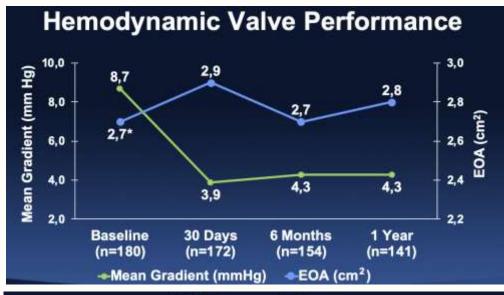
Defining Severe Aortic Regurgitation and the Timing of Intervention*

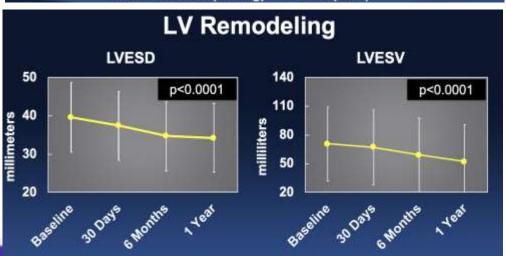
Sheldon E. Litwin, MD

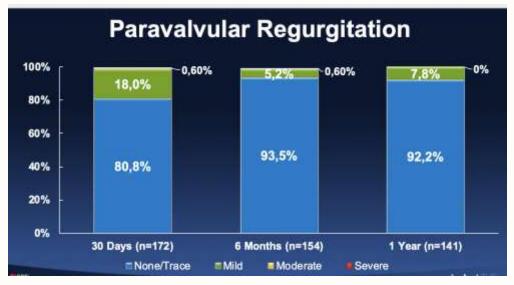


The Case for Redefining "Moderate" AR

- Significant AR is NOT uncommon, but terribly underdiagnosed (remember when TR was the forgotten valve?!)
- 2D Echo is inadequate for quantification of AR severity and of LV remodeling. Forget linear dimensions → Beware guidelines are outdated!
 - Despite patients having a long asymptomatic clinical course, the LV is feeling it!
 - Don't stop at moderate AR, use CMR to confirm
- .While the current goal is to address the immediate need in HR/inoperable patients, true success will be measured by transformation of the diagnosis, selection and treatment of AR patients.


Poor Agreement between Echo vs. CMR AR Severity





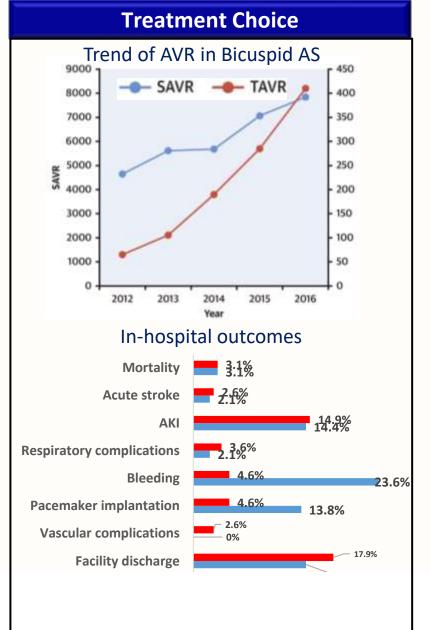
Align AR Trial

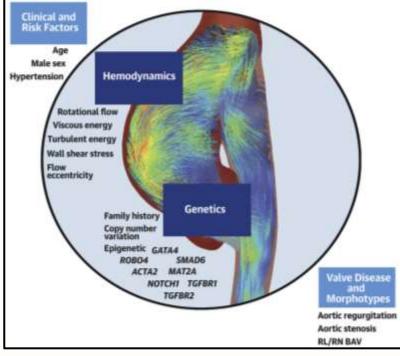
Prediction #2


Aortic Regurgitation Grading will be redefined; Patients will be treated earlier and more effectively via transcatheter approach with dedicated devices

TAVR NEXT STEPS I Bicuspid Aortic Valve Disease

Bicuspid Aortic Stenosis




BICUSPID AORTIC STENOSIS

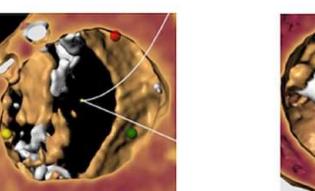
Windecker et al. Eur Heart J 2022;43(29):2729-2750; Elbadawi et al. JACC Cardiovasc Interv 2019;12(18):1811-1822; Rodríguez-Palomares. et al. J Am Coll Cardiol 2023;82(5):448-464.

Anatomical Considerations RL-BAV RN-BAV **Aortic valve fusion** morpholotypes LN-BAV 2-sinus BAV and distribution of leaflet calcification Severity Ascending Extended Root ilatation

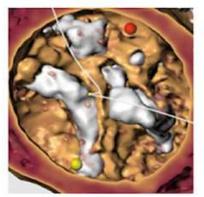
Future Progression of Aortopathy

Bicuspid Aortic Stenosis

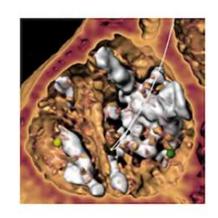
- Younger patients
- More complex, non-circular anatomy
- Prosthetic hemodynamic outcomes
- Risk of stroke, annulus rupture


No randomized clinical trial compared TAVI and SAVR to date

Anatomical Considerations in Patients with Bicuspid Valve


Suitable for TAVR

NOT Suitable for SAVR


No Calcified Raphe or Excess Leaflet Calcification

Excess Leaflet Calcification

Calcified Raphe

<u>Calcified Raphe Plus Excess</u> <u>Leaflet Calcification</u> <u>& Calcified raphe</u>

No dilation of ascending aorta

Dilated ascending aorta (>45mm, >50mm, >55mm)

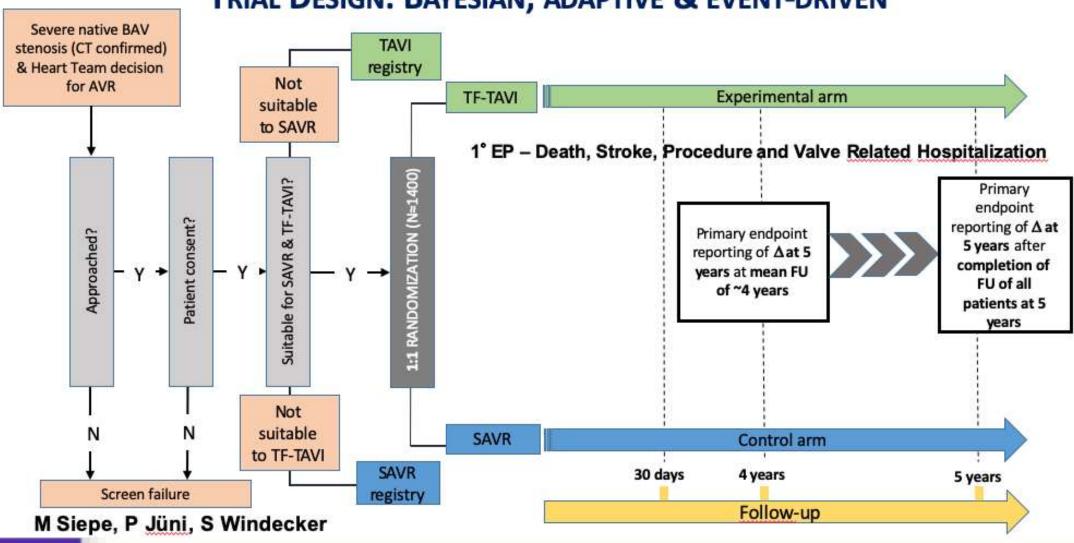
TAVR in Bicuspid Aortic Valve

Need for randomized trial of TAVI vs. SAVR and larger cohorts with long-term follow-up in patients with BAV after TAVR

Detter results with herest

- generation of THV
- A CT scan is mandatory for procedure planning
- Clacified raphe + highly calcified leaflets associated with poor outcomes

impiantation than OAVIX


- Low but higher risk of annular rupture than TAV (BEV)
- Higher risk of ≥mild PVR than TAV or surgery

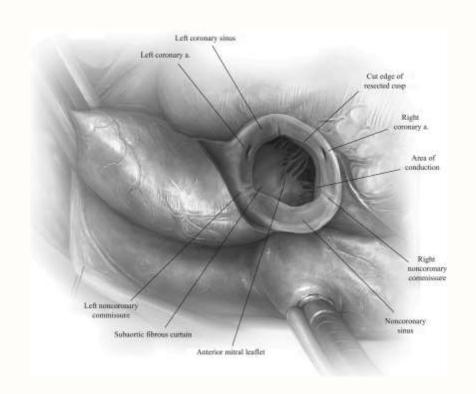
IIICHIOGO IOI IIIV OCICCHOI

- Type of valve based on anatomy
- Prosthetic valve durability
- · Prosthetic valve thrombosis
- Evolution of the aortopathy after TAVR

NAVIGATE BICUSPID TRIAL TRIAL DESIGN: BAYESIAN, ADAPTIVE & EVENT-DRIVEN

Prediction #3

Bicuspid aortic valve is an anatomical factor that favours SAVR.


However, patients will continue to be treated with TAVR (given the excellent results so far) after considering specific risks and preferences in a joint decision making process and until results of a RCT.

TAVR Next Steps I Small Annulus

Small Annulus

TAVR Next Steps I Small Annulus

Small Annuli Are Common:

SAVR prostheses \leq 21 mm¹ = 22-44%

Use of small TAVR prostheses:

	Area <u><</u> 430 mm2 (IFU 20/23 mm BE) PARTNER Trials	Perimeter-derived diam ≤ 23.4 mm (IFU 23/26 SE) Corevalve/EVOLUT Trials
Intermediate Risk Trials ^{2,3}	36%	22%
Low Risk Trials ^{4,5}	31%	21%

- Higher in Southern Europe and Asia ¹
- TAV in SAV = 70-80% 6,7
- Several fold higher in women who make up ~90% of small annulus population

¹ Freitas-Ferraz et al, Circ 2017;139:2685

² Reardon et al, NEJM 2017;376:1321

³ Kodali et al, European Heart J 2016;37:2252

⁴ Popma et al, NEJM 2019;380:1706

⁵ Mack et al, NEJM 2019;380:1695

⁶ Dvir et al, JAMA 2014;312:162

⁷ Webb et al, JACC 2017;69:2253

SMART Trial

Severe native aortic valve stenosis with a small annulus (< 430 mm² by MDCT)

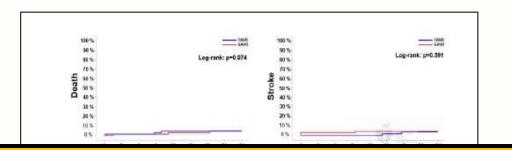
Randomization 1:1 Stratified by Sex (~700 patients)

FULLY ENROLLED!
Submitted for LBCT at
ACC 2024

pective, multi-center, international, randomized controlled, trket study at 90 sites in Canada, EMEA and the United States

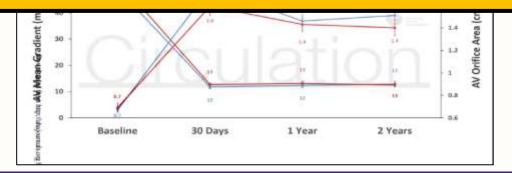
rimary endpoints at 12 mos:

- 1. Death, disabling stroke, re-hosp HF
- 2. Bioprosthetic valve dysfunction


Edwards SAPIEN 3/ SAPIEN 3 Ultra

30-Day and annual 5-Year follow-ups for all patients

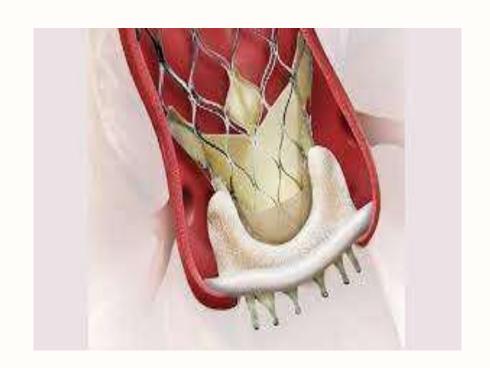
Study Organization	Chair/PI: Howard C. Herrmann, MD Co-PIs: Roxana Mehran, MD and Didier Tchetche MD		
Major inclusion/exclusion criteria	Small annulus with all risk groups (low to high) An "all-comers" trial (including bicuspid valves) Patient's anatomy must be suitable for TF TAVR treatment with both devices		
External Support (Medtronic)	Echocardiographic Core Laboratory, Clinical Events Committee (CEC), Data Safety Monitoring Board (DSMB), Subject Confirmation of Qualification/Case Planning Committee (screening phase)		

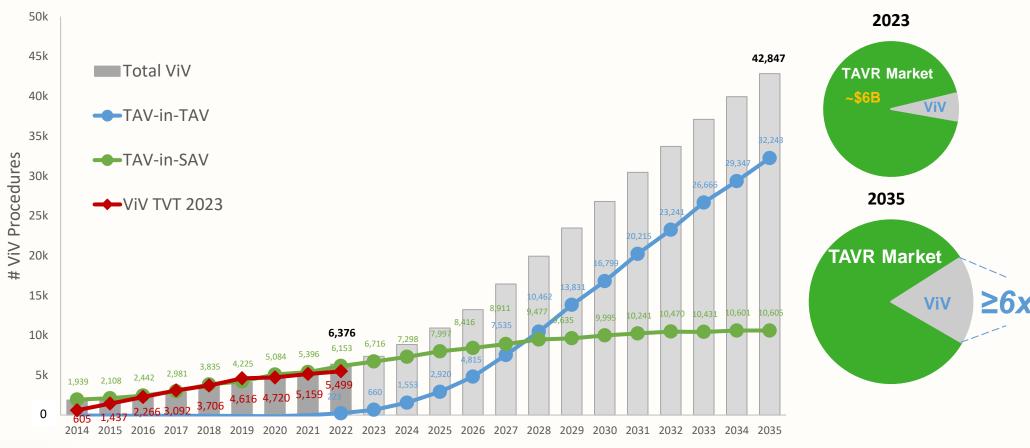


TAVR Next Steps I Small Annulus I VIVA Trial

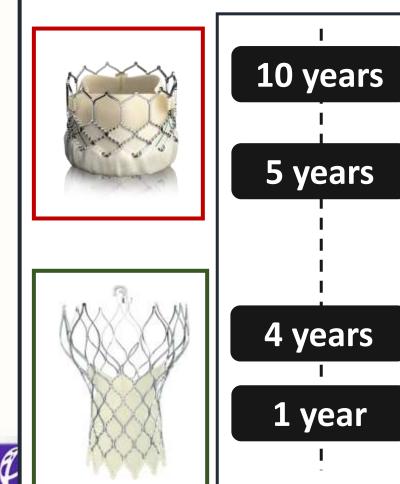
"...findings suggest that the 2 therapies (SAVR/TAVR) represent a valid alternative for treating patients with AS and SAA. Treatment selection should likely be individualized...»

Prediction #4

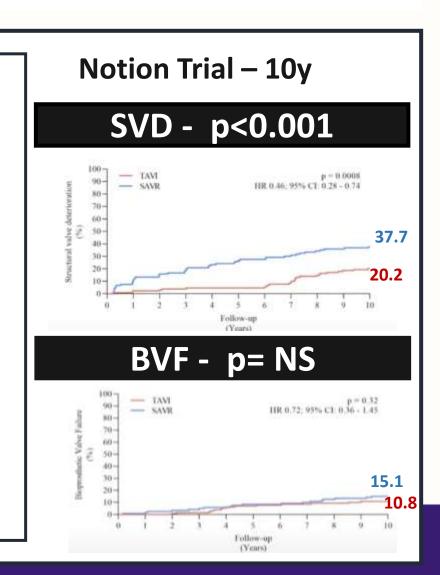

Pending results of the SMART trial and based on the results of the VIVA trial, TAVR represents a safe and effective alternative to surgery after careful consideration of patients age, preferences and anatomical conditions


TAVR NEXT STEPS I Lifetime Managament

Valve in Valve



US ViV Market Forecast until 2035


Longest Follow-up of Landmark Trials of TAVR versus SAVR

- **SURTAVI**
- **PARTNER 3**
- **Evolut Low-Risk**

UK-TAVI (all THVs)

Patient Selection

Type of failed valve

- · Porcine vs Bovine
- Stented Stentless Sutureless
- Intra-annular vs Supra-annular

Failure mechanism (VARC 3)

- SVD NSVD (PPM)
- Thrombosis
- Endocarditis

Figure 1

ViV **Decision Making**

THV selection

- Intra-annular vs Supra-annular
- CE Mark (Edwards and Corevalve)

Procedure

- Coronary Re-access
- · Peripheral access

THV dimensions

- ViV Aortic mobile App
- · Stent ID vs True ID
- CT scan measures

Supplementary Figure 1-5

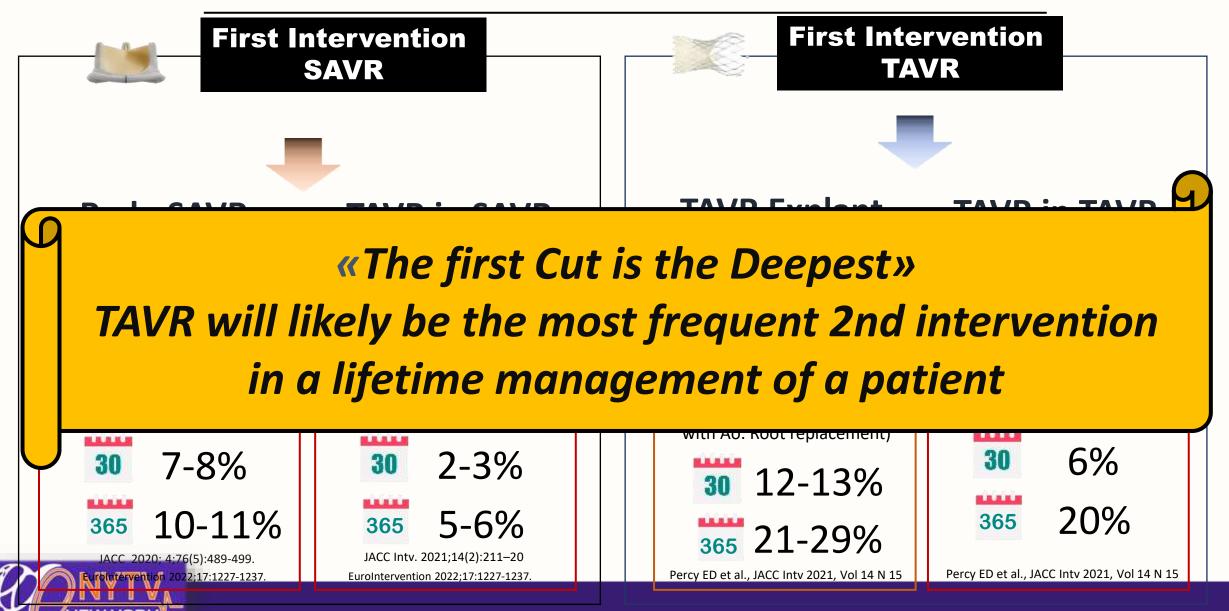
Risk of coronary obstruction

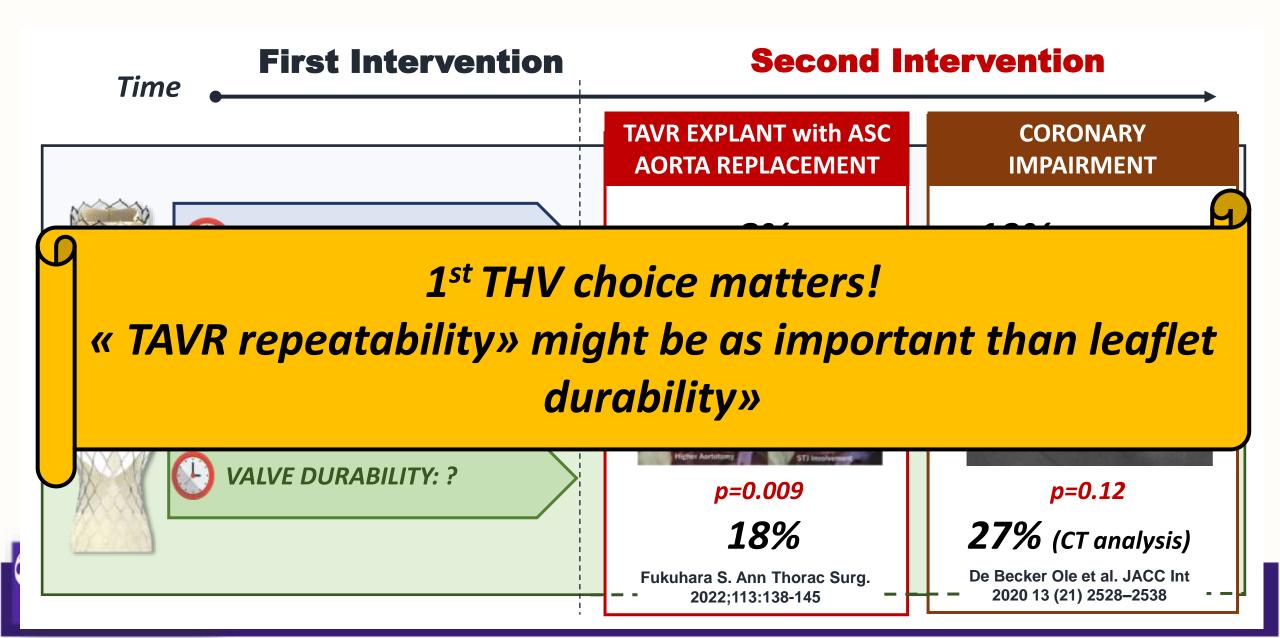
- VIVID classificcation
- VTC at CT scan
- VTSTJ at CT scan

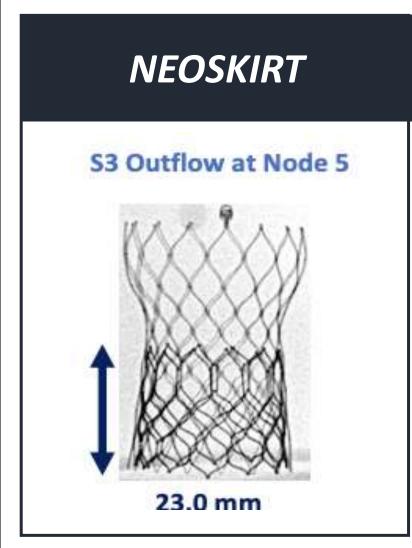
Figure 4; Supplementary Figure 6-9

Procedural techniques

- BASILICA
- Coronary protection
- BVF
- CEPD






Lifetime Management of Aortic Disease (Concept #1)

Lifetime Management of Aortic Disease (Concept #2)

What's important in RE-do TAVR?

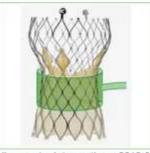
Tarantini G, et al. JACC Cardiol Intv 2022

Tarantini et al. Am J Cardiol 2023;192:228-244)

What's important in RE-do TAVR?

• Leaflet Modification Methods

Basilica Techniques


Leaflet "splitting" - Three Unmet Needs

Degenerated valves that require reintervention present a risk of coronary obstruction and coronary access impairment

TAVI in Native Valves that present a risk of coronary impairment in certain anatomies

TAVI in Bicuspid is suboptimal

1. Hayashida et al, Circulation: Cardiovascular Interventions. 2013;6:284-291

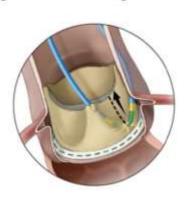
Leaflet Splitting: potential use

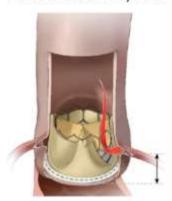
1

rave II

2

Splitting of native valve leaflets to avoid coronary impairment


"Tricuspidization" of Bicuspids pre-TAVI


Leaflet wire transversal and snaring

Leaflet slicing

Preserved coronary flow

ShortCut™ Catheter
First dedicated transcatheter leaflet splitting device

Designed to enable coronary access & prevent coronary obstruction during TAVI

Complete control over positioning & leaflet splitting location

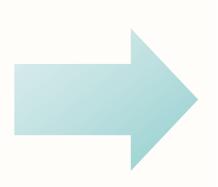
Allows for safe, simple splitting of single or double leaflets using same device

Prediction #5

Valve in Valve and leaflet modification procedures will increase!

Which is the first procedure? (NOT all THVs and SHVs are created equal (coronary access, fracturability, neoskirt, index expansion, leaflet overhang etc)

Second procedure most likely THV (consider THV type, size & positioning)



TAVR Projection 2030

Longer-term management of TAVR patients will improve with the ability to monitor patients from home with minimal disruption to their daily lives. This technology, along with improved home care pathways, will allow a greater number of patients to discharge to home.

