New York Transcatheter Valves Symposium

TAVR: How it Began, Where We Stand Today, and What Will the Future Bring?

Martin B. Leon, MD

Columbia University Medical Center Cardiovascular Research Foundation New York City

Thursday, December 6, 2018

Columbia University Medical Center

Disclosure Statement of Financial Interest NY Transcatheter Valves Symposium; Dec 6, 2018

Martin B. Leon, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation / Financial Relationship

- Grant / Research Support
- Consulting Fees / Honoraria
- Shareholder / Equity

Company

Abbott, Boston Scientific, Edwards Lifescience, Medtronic

Boston Scientific, Medtronic, Gore, Meril Lifescience

GDS, Mitralign, Valve Medical

Columbia University Aedical Center

Dr. Alain Cribier First-in-Man PIONEER

April 16, 2002

COLUMBIA UNIVERSITY MEDICAL CENTER

TAVR Landscape - 2018

How it began...

COLUMBIA UNIVERSITY MEDICAL CENT

The Andersen Stent-Valve (1989)

Columbia University Medical Center

The Andersen Stent-Valve (1992)

COLUMBIA UNIVERSITY MEDICAL CENTER

Alain Cribier Sketches (1990)

ct2018

<u>a</u>

COLUMBIA UNIVERSITY MEDICAL CENTER

Percutaneous Valve Technologies PVT) (1999 - 2004)

FOUNDERS Martin Leon Alain Cribier Santon Rowe Stan Rabinovich

Partner: ARAN Research & Development Ltd.

Columbia University Medical Center

Percutaneous Valve Technologies PVT) Early Prototypes

- Different valve configurations
- Different leaflet materials, designs and attachment means
- Extensive hydrodynamic testing

PVT designed the testing equipment and crimping tools

olumbia University edical Center

PVT 2000-2002: The Sheep Era

CERA (Centre d'Experimentation et de Recherche Appliquée) Institut Monsouris, Paris, France

Columbia University Medical Center

PVT - Cadaver Heart Study at AFIP

Columbia University Medical Center

TAVR Landscape - 2018

The first case in Rouen

COLUMBIA UNIVERSITY

Alain Cribier to Martin Leon, Stan Rowe, Stan Rabinovich, Assaf Bash April 12, 2002 Martin Leon to Alain Cribier April 12, 2002

I have a fascinating case that I would like to discuss with you!

MR

Antegrade Approach: Guidewire Position in LV

Columbia University Medical Center

Valve Positioning

Improvement in trans-vavular gradient!

Columbia University Medical Center

It works !!!

Columbia University Medical Center

Dr. Alain Cribier First-in-Man PIONEER

Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis

First Human Case Description

Alain Cribier, MD; Helene Eltchaninoff, MD; Assaf Bash, PhD; Nicolas Borenstein, MD; Christophe Tron, MD; Fabrice Bauer, MD; Genevieve Derumeaux, MD; Frederic Anselme, MD; François Laborde, MD; Martin B. Leon, MD

Conclusions: Nonsurgical implantation of a prosthetic heart valve can be successfully achieved with immediate and midterm hemodynamic and clinical improvement.

April 16, 2002

Columbia University Medical Center

TAVR - The Early Skeptics

- Strokes
- Aortic rupture
- Coronary occlusion
- Mitral valve injury
- Valve instability embolization
- Para-valvular regurgitation
- Vascular complications
- Valve durability
- Technical challenges insurmountable

This is a crazy project that will fail!

olumbia University iedical Center

TAVR Landscape - 2018 Key Messages

 After the landmark FIM case by Alain Cribier, the next several years were spent replicating and refining the TAVR procedure in extremerisk patients (I-REVIVE/RECAST and REVIVAL feasibility registries in EU and US).

Transfemoral Retrograde TAVR Collaboration across the seas....

Drs. John Webb and Alain Cribier

Columbia University Medical Center

Trans-apical TAVR A deal with the devil?

Drs. Michael Mack and Fred Mohr

Columbia University Medical Center

TAVR Landscape - 2018

Where we stand today...

Columbia University Medical Center

TAVR Landscape - 2018 Key Messages

- After the landmark FIM case by Alain Cribier, the next several years were spent replicating and refining the TAVR procedure in extremerisk patients (I-REVIVE/RECAST and REVIVAL feasibility registries in EU and US).
- Despite the early success of TAVR in extreme risk patients, no one could have predicted the evolution of TAVR into a mainstream therapy with a profound impact on CV medicine!

olumbia University Iedical Center

TAVR Landscape - 2018 Key Messages

Reasons for TAVR Success...

- 1. Rapid technology evolution
- Procedural refinements and 2. simplification
- Avalanche of clinical evidence 3.
- 4. Heart valve team acceptance
- Explosive growth worldwide 5.

TAVR Technology Evolution

Conformité Européene (CE) Mark TAVR Systems

Non-Approved TAVR Systems

TAVR Access Evolution

TF TAVR clearly reigns supreme!

Source: STS/ACC TVT Registry Database. 79,714 records as of Jan 18, 2017

Columbia University Medical Center

TAVR Procedure Simplification

<u>The Minimalist Strategy</u>

No general anesthesia; use "conscious sedation"

Almost all TAVR cases worldwide are now candidates for some version of "minimalist" procedural strategy! *Median LOS after TAVR is 1-2 days at Columbia-NYP Hospital!*

o icos... monitor in recovery area

Rapid ambulation and early discharge plans (1-2 dys)

olumbia University edical Center

"Outpatient" Same-Day TAVR Sacre-Coeur Hospital; Montreal, CN

Featured Case Reports

CCI 2016

Same Day Discharge after Transcatheter Aortic Valve Replacement: Are We There yet?

Philippe Généreux,^{1,2*} MD, Philippe Demers,¹ MD, and Frédéric Poulin,¹ MD

Early discharge after transcatheter aortic valve replacement (TAVR) has been increasingly reported, and is now becoming routinely performed in experienced TAVR centers. However, to the best of our knowledge, no case has been described where a patient was safely discharged on the same the day of the procedure. This report will present the case of a patient who underwent a successful transfemoral TAVR and was safely discharged home the same day. Specific requirements and criteria are proposed to ensure the safety of this approach. © 2015 Wiley Periodicals, Inc.

Key words: TAVR; TAVI; discharge

Genereux

PULLAIU

Palisaitis

Columbia University Medical Center

- NewYork-Presbyterian

Genereux P et al. CCI 2016;87:980-2

Demers

Capodanno D, Leon MB. EuroIntervention 2016

The Heart Team 3.0

Estimated US TAVR Growth

2018 - 2025 the US TAVR Market will Increase 2.5X!

Current (2018) Market Projections

Columbia University Medical Center

Estimated US TAVR Growth

In the US, by 2025, >75% of all AVR will be TAVR!

Current (2018) Market Projections

Columbia University Medical Center

TAVR Landscape - 2018 Key Messages

 The VARC initiative set the stage for PARTNER, which arguably became the most successful sequence of clinical trials EVER!

TAVR and SAVR Endpoint Guidelines

de s

Columbia University Medical Center

PARTNER Heart Valve Team (Executive Committee)

Jeff Moses

ct2018

Marty Leon

John Webb

Michael Mack

Columbia University Medical Center

The PARTNER Trials

COLUMBIA UNIVERSITY MEDICAL CENTER

PARTNER Publications Office (PPO) as of 11/26/18 (Maria Alu)

Acceptance Rate by Journal

Total Manuscripts Published: 100 (23 different journals) Total Abstracts Presented: 120 (12 distinct scientific symposia)

PARTN

TAVR Landscape - 2018 Key Messages

- The VARC initiative set the stage for PARTNER, which arguably became the most successful sequence of clinical trials EVER!
- The PARTNER trials and the MDT CoreValve studies applied the highest level of clinical trial rigor, including 8 RCTs, to validate the relative safety and efficacy of TAVR cw control therapies (e.g. medical Rx or surgery) in deescalating risk strata over a ten-year period!

OLUMBIA UNIVERSITY IEDICAL CENTER

TAVR Patient Selection *Surgical Risk Stratification*

Columbia University Medical Center

TAVR Risk Assessment*Risk Stratification Redefined*

Traditional

Contemporary

Columbia University Medical Center

TAVR Risk AssessmentTAVR Higher-Risk Strata

Futility (cohort C)

- Life expectancy < 1 year, despite successful TAVR
- Risk predictive models for early mortality or poor clinical outcomes with TAVR
- co-morbidities (STS>15%)
- Frailty and dementia assessments critical
- *Rx* = *BAV* or hospice

Futile

Futile

MEDICAL CENTER

Role of Frailty Assessment

TAVR Risk Assessment TAVR <u>Higher</u>-Risk Strata

Extreme

Extreme Extreme

Extreme or Prohibitive Risk; "Inoperable"

- > 50% likelihood of death or irreversible morbidity
- Heart team decision with surgeons as the gatekeepers
- Clinical & anatomic exclusions for surgery
- TAVR is only option

All-Cause Mortality (ITT) All Patients

All-Cause Mortality (ITT) Median Survival

TAVR Risk Assessment TAVR <u>Higher</u>-Risk Strata

High Risk

- STS score ≥8%
- Combination of clinical co-morbidities and anatomic factors
- Requires surgical
 input and Heart Team
- Unless negative anatomic factors, TAVR preferred

All-Cause Mortality (ITT) All Patients

PART

ER

Aortic Valve Mean Gradient

CoreValve US Clinical Trials

All-Cause Mortality

[95% confidence intervals]

Valve Hemodynamics

P < 0.01 for TAVR vs. SAVR at all follow-up time points

TAVR Risk AssessmentTAVR Lower-Risk Strata

Moderate

Moderate Moderate

Moderate risk = Intermediate risk

- STS ≈ 3 8%
- Mean age ≈ 80 yo
- Clearly surgical candidates
- Choice of TAVR vs. surgery based on clinical/ anatomic factors and patient preference

Columbia University Medical Center

Primary Endpoint (ITT) All-Cause Mortality or Disabling Stroke

THE

PARTN

TF Primary Endpoint (ITT) All-cause Mortality or Disabling Stroke

тне

PARTN

P2A and S3i Perspectives Key findings

Surgery better

TAVR better

Vascular complications PVR Mortality Strokes AKI Severe bleeding New onset AF Valve area 30-day QOL 30-day 6MWT ICU/hospital LOS Days alive OOH

Which therapy do you think is better?

SURTAVI Trial All-Cause Mortality or Disabling Stroke

SURTAVI Trial Disabling Stroke

CoreValve SURTAVI Trial

10% 24 Months SAVR 95% CI for TAVR SAVR TAVR 8% Difference **Disabling Stroke** 4.5% -4.0, 0.1 2.6% 6% 4% 2% 0% 6 12 0 18 24 **Months Post-Procedure** No. at Risk 674 407 241 **SAVR** 796 555 **TAVR** 864 755 612 456 272

TAVR Guidelines *The "New" AHA/ACC Focused Update*

2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

Surgical Risk Strata

STS database 2002-2010 (141,905 pts)

The 'holy grail' 80% low-risk AS patients!

TAVR Risk AssessmentTAVR Lower-Risk Strata

Low risk

- STS < 3%
- Mean age ≈ 65-80 yo
- Usual surgical patient!
- Subset of bicuspid AV
- Limited clinical data, BUT 4 major RCTS ongoing – data in 2019!
- Will certainly involve a "shared" decision-making process

NOTION: Baseline Characteristics

Characteristic, % or mean ± SD	TAVR n=145	SAVR n=135	<i>P</i> value
Age (yrs)	79.2 ± 4.9	79.0 ± 4.7	0.71
Male	53.8	52.6	0.84
Society of Thoracic Surgeons (STS) Score	2.9 ± 1.6	3.1 ± 1.7	0.30
STS Score < 4%	83.4	80.0	0.46
Logistic EuroSCORE I	8.4 ± 4.0	8.9 ± 5.5	0.38
NYHA class III or IV	48.6	45.5	0.61

COLUMBIA UNIVERSITY MEDICAL CENTER

NOTION: Death (all-cause), Stroke or MI at <u>5</u> Years (as-treated)

CoreValve vs. Surgery in Low-Risk Patients (N = 280)

Pls: H. Gustav Hørsted Thyregod and Lars Sondergaard,

ACC 2018

Columbia University Medical Center

NOTION: Valve Performance (echo) thru <u>5</u> years (as treated)

CoreValve vs. Surgery in Low-Risk Patients (N = 280)

Pls: H. Gustav Hørsted Thyregod and Lars Sondergaard,

ACC 2018

Columbia University Medical Center

The PARTNER 3 Trial Study Design

Follow-up: 30 days, 6 mos, 1 year and annually through 10 years

MEDTRONIC TAVR RCT IN LOW RISK PATIENTS

What have a set a with whith? surgery?

Columbia University Medical Center

TAVR Landscape - 2018 Key Messages

 Along the TAVR journey, we studied important TAVR subgroups and aspects of bioprosthetic valve function, patient responses to therapy, and socio-economic impact.

olumbia University Iedical Center

TAVR for Bioprosthetic Valve Failure Valve-in-Valve

Webb JG et al. JACC 2017;69:2253-62

Cohort Derivation and Characteristics

Population characteristics

- Mean age 84.5 yrs
- 48% female
- 95% NYHA class 3-4
- 92% obstructive CAD
- Severe AS: AVA 0.65 cm²
- THV size: 52% 23; 48% 26
- Access: 43% TA ; 57% TF

Survival w/o reintervention

 39% at 5 years by nonadjusted parametric estimate

AV Mean Gradient Population Trends: Early Post Implant and Midterm to 5 Yrs

PARTNER

AV Reintervention: Incidence and Case Reviews

- 20 pts with reintervention(9 SAVR, 8 late valve-in-valve, 3 BAV)
- Indication: Structural cause in 5 (25%)
 AS: n=1; Valve thrombosis: n=1; Trans AR: n=3

20 pts with reintervention

Adverse Changes

(N = 4, 20%) Classic ↑ gradient, ↓ EOA, ↓ DVI

No Data

(N = 5, 25%) No post-implant trial echo data

Adverse Initial

(N = 1, 5%)

High initial gradient, no change

No Changes

- (N = 10, 50%)
 - No appreciable or consistent hemodynamic changes
- Last echo data > 1 mo prior to reintervention in 9/10 pts

Valve Safety: Case Reviews of Hemodynamic 'Outliers'

• VARC-2 ID'd 'mild AS' in 3-48%

- Similar rates in SAVR and TAVR
- Impractical for case review
- \uparrow AV mean gradient \ge 20 mmHg
 - N=10 (0.45%)
 - 6 deaths (3 CV), no reintervention
- Any mean gradient ≥ 40 mmHg
 - N=11 (0.46%)
 - 8 deaths (2 CV), 1 reintervention
- Any DVI ≤ 0.25
 - N=44 (1.8%)
 - 22 deaths (5 CV), no reintervention

Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Davide Capodanno¹*[†], Anna S. Petronio^{2†}, Bernard Prendergast³, Helene Eltchaninoff⁴, Alec Vahanian⁵, Thomas Modine⁶, Patrizio Lancellotti⁷, Lars Sondergaard⁸, Peter F. Ludman⁹, Corrado Tamburino¹, Nicolò Piazza¹⁰, Jane Hancock³, Julinda Mehilli¹¹, Robert A. Byrne¹², Andreas Baumbach¹³, Arie Pieter Kappetein¹⁴, Stephan Windecker¹⁵, Jeroen Bax¹⁶, and Michael Haude¹⁷ New EU guidance with standardized definitions and endpoints to assess bioprosthetic aortic valve deterioration and failure

Capodanno D et al. Europ Heart J 2017

- NewYork-Presbyterian

COLUMBIA UNIVERSITY MEDICAL CENTER

Head-to-Head Durability of TAVI vs SAVR 6-Year Outcomes of the NOTION Trial

2018 Courtesy: D. Capodanno and L. Sondergaard

Columbia University Medical Center

Primary Endpoint (PIA RCT) KCCQ Overall Summary

Growth curve analysis; adjusted for baseline MCID = minimum clinically important difference S3i Economics

Total 1-Year Costs

$\Delta = -15,511 \text{ (p<0.001)}$ \$96,489* \$100,000 \$80,977* \$80,000 \$38,238 \$26,861 \$60,000 \$40,000 \$58,250 \$54,117 \$20,000 \$-S3-TAVR SAVR

Follow-up

Index Hospitalization

* Trimmed means

S3i Economics

S3-TAVR vs. SAVR: Cost-Effectiveness

PARTNER II

* Costs and benefits discounted at 3%

TAVR Landscape - 2018 Where are we <u>NOW</u>?

- TAVR has become a "routine" procedure in
 > 1,000 centers worldwide (and almost 600 in
 the U.S.) for patients with severe symptomatic
 AS with ≥ moderate surgical risk profiles and
 appropriate anatomy.
- Trans-femoral is the default approach and minimalist strategies are favored.
- The heart valve team is the central vehicle for coordinating all Dx and Rx decisions.

olumbia University Iedical Center

TAVR Landscape - 2018 Where are we <u>NOW</u>?

 Current 'primary' TAVR technology has stabilized but there are new TAVR systems which are being evaluated in the U.S. and elsewhere.

olumbia University Iedical Center

Current "Standards" for TAVR

MDT Evolut R (PRO) Edwards Sapien 3

"Next in Line" for TAVR

LOTUS (Edge) ACURATE neo PORTICO

COLUMBIA UNIVERSITY MEDICAL CENTER

"Rebooting" and Increasing Momentum

JENA Valve

CENTERA VENUS A Valve

Columbia University Medical Center

TAVR Landscape - 2018 Where are we <u>NOW</u>?

 Current 'primary' TAVR technology has stabilized but there are new TAVR systems which are being evaluated in the U.S. and elsewhere.

 New 'accessory' TAVR technology may improve procedural outcomes – most recent, has been the introduction of cerebral embolic protection devices.

- NewYork-Presbyterian

Columbia University Medical Center

Cerebral Embolic Protection (CEP) Clinical studies...

A pr	JAMA	Original Investigatio	n	
TriG		ect of a Cer	JACC VOL. 59, NO. 4, 2017	ions
duri	Fo		JANUARY 31, 2017:463-70	
resu	inl	Protecti		CrussMark
A 1	Th	Cerebra		
Ale F	Stepha	Transca	Cerebral Embolic	nt _{D:}
Joch a	Friedri	Samir R. Kapadia, N	Protection During TAVR	. Lazar, PhD, ^b
Utz Micl		Robert Zivadinov, N Saif Anwaruddin, N	A Clinical Event Meta-Analysis	: Woitek, MD, ^j
and		Amar Krishnaswam James M. McCabe, 1	Gennaro Giustino et al	l D, ^c i son, MD, РнD, ^a
1	124	Maria C. Alu, MS, ^b	behalf of the SENTINEL Trial Investigators	Leon, MD, ^b
		Hotor	-	
		Com	pared With Unprotected Procedu	ires

Julia Seeger, MD,^a Birgid Gonska, MD,^a Markus Otto, MD,^b Wolfgang Rottbauer, MD,^a Jochen Wöhrle, MD^a

COLUMBIA UNIVERSITY MEDICAL CENTER

TAVR Accessory Devices Cerebral Embolic Protection (CEP)

SENTINEL CEP Randomized Trial Embolic Debris Analysis

SENTINEL CEP Randomized Trial Clinical Outcomes

Stroke Diagnosis ≤72 hours (ITT)

Columbia University Medical Center

CEP Meta-analysis *Five Studies (n = 625 patients)*

	Embolic p	rotection	No embolic	protection		Risk Ratio	Ris	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed (95% CI)	M-H, Fb	ed, 95% Cl	
CLEAN-TAVI	4	50	5	50	15.9%	0.80 (0.23-2.81)			
DEFLECT-III	3	46	4	39	13.7%	0.64 (0.15-2.67)	10 		
EMBOL-X	0	14	0	16		Not estimable			
MISTRAL-C	1	32	6	33	18.7%	0.17 (0.02-1.35) -		<u></u>	
SENTINEL	16	234	12	111	51.7%	0.63 (0.31-1.29)	-		
Total (95% CI)		376		249	100.0%	0.57 (0.33-0.98)			
Total events	24		27						
Heterogeneity: Chi ² = 1	l.68, df = 3 (P =	= 0.64); l ² =	0%			-	L.	- I - I -	
Test for overall effect:	Z = 2.01 (P = 0	.04)				0.01	0.1	1 10	100

 Meta-analysis of 5 RCTS of CEP in TAVR (625 pts; 376 with CEP and 249 without CEP)

- > 40% reduction in risk of stroke or death (6.4% vs 10.8%; RR: 0.57; 95% CI: 0.33-0.98; p=0.04; l² = 0%)
- NNT = 22 to reduce one stroke or death

Giustino G et al. JACC 2017

dumbia University edical Center

Cerebral Embolic Protection (CEP) SENTINEL ULM Experience

- · 802 all-comer consecutive TAVR patients at University of Ulm were prospectively enrolled
- · A propensity-score analysis was done matching the 280 patients protected with Sentinel to 280 control patients

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. ■, NO. ■, 2017 ISSN 1936-8798/\$36.00 http://dx.doi.org/10.1016/j.jcin.2017.06.037

Cerebral Embolic Protection During Transfemoral Aortic Valve Replacement Significantly Reduces Death and Stroke Compared With Unprotected Procedures

Julia Seeger, MD,^a Birgid Gonska, MD,^a Markus Otto, MD,^b Wolfgang Rottbauer, MD,^a Jochen Wöhrle, MD^a

monality and stroke at 7-days

Wörhle J, Seeger J, et al. DGK Mannheim 2017; CSI-UIm-TAVR Study clinicaltrials.gov NCT02162069

Columbia University Medical Center

Sentinel CEP with TAVR

'Real world' registries - stroke reduction

Study Center • Total N • Timing	Unprotected TAVR Patients Neuro Event Rate % (n/N)	Sentinel TAVR Patients Neuro Event Rate % (n/N)	Relative Risk Reduction (RRR)	Number- needed-to- treat (NNT) to avoid one event
Ulm University ¹ • N=560 • May 2017	4.6% (13/280)	1.4% (4/280)	70%	22
Pinnacle Health ² N=122 Feb 2018 	10% (7/69)	0% (0/53)	100%	10
Erasmus and University Med	5.4% (32/589)	1.4% (7/485)	74%	25
Centers in Rotterdam and Groningen ³ • N=1047 • June 2018	3.6% (21/589)	0.8% (4/485)	78%	36
Cedars Sinai ⁴ • N=440 • June 2018	4.9% (8/162)	1.1% (3/278)	78%	26

COLUMBIA UNIVERSITY

Cerebral Embolic Protection (CEP) Is it necessary?

Would you take a chance and drive without a seatbelt? You never know when you"ll need protection!

Columbia University Medical Center

- NewYork-Presbyterian

Approx. 8 mm, captured in LCC

TAVR Landscape - 2018

What the future will bring...

Columbia University Medical Center

TAVR Landscape - 2018 Speculations and Predictions

COLUMBIA UNIVERSITY MEDICAL CENT

TAVR Landscape - 2018 Key Messages

- The success of TAVR therapy has catalyzed a 'second wave' of clinical studies to explore the expansion of clinical indications (even beyond current surgery).
 - Bicuspid AV disease
 AS + concomitant disease (CAD, MR, AF)
 Severe asymptomatic AS
 Moderate AS + CHF
 High-risk severe AR

tct2018

Olumbia University Iedical Center

Incidence of BAV in Isolated SAVR

BAV Classification CTA System

(from 14 centers in North America, Europe and Asia)

Tricommissural

3 commissures V-like orifice "functional or acquired"

t2018

Bicommissural Raphe-type

2 commissures, 1 raphe Slit-like orifice Bicommissural Non Raphe-type

2 commissures, no raphe Slit-like orifice

Columbia University Medical Center

- NewYork-Presbyterian

Jilaihawi H. JACC Imaging 2016

Recent Multicenter BAV – TAVI Registry

Raj Makkar; TCT 2018

Propensity Matched Analysis

- 1:1 subject selection
- 24 baseline covariates
 - Missing values: imputed using Markov Chain Monte Carlo method
- Logistic regression model

Columbia University Medical Center

1-Year All-Cause Mortality

1-Year All Strokes

Para-Valvular Leak

AS and Atrial Fibrillation Watch-TAVR

National PIs: Samir Kapadia & Martin Leon Grant support: Boston Scientific • Procedural costs

Columbia University Medical Center

EARLY TAVR Trial Study Flow

Asymptomatic Severe AS and 2D-TTE (PV ≥4m/s or AVA ≤1 cm²) Exclusion if patient is symptomatic, age <65 yo, EF<50%, concomitant surgical indications, or STS >8

Primary Endpoint (superiority): 2-year composite of all-cause mortality, all strokes, and repeat hospitalizations (CV) Principal Investigators: Philippe Généreux, Allan Schwartz Chair: Martin B. Leon TAVR UNLOAD TrialStudy Design(600 patients, 1:1 Randomized)Pls: Nicolas M. Van Mieghem and Martin B. Leon

tct2018

- NewYork-Presbyterian

MEDICAL CENTE

Jena Valve TAVR System Ongoing EFS for AS and <u>AR</u>

Valve sizes: 23, 25, and 27 mm

Features

- self-expanding nitinol frame
- bovine pericardial leaflets
- supra-annular valve position
- clipping of native leaflets
- mitigated risk of coronary obstruction, new PPM, and annulus rupture due to pre-defined position in the annulus

Columbia University Medical Center

TAVR Landscape - 2018 Key Messages

- The success of TAVR therapy has catalyzed a 'second wave' of clinical studies to explore the expansion of clinical indications (even beyond current surgery).
- There are many innovative TAVR-related technologies which are being actively explored!

olumbia University Iedical Center

Tissue Engineered Heart Valvesthe promise...Non living

Mechanical valves

Bioprosthetic valves

2020

Columbia University Medical Center

Zurich Tissue Engineered Heart Valve *A "Living" Aortic Valve*

Courtesy of Simon P. Hoerstrup, MD, PhD

Columbia University Medical Center

Endogenous tissue restoration combining 3 scientific disciplines

Jean Marie Lehn

Nobel prize for Supramolecular Chemistry, 1987

Sijbesma, Science, 1997

COLUMBIA UNIVERSITY MEDICAL CENTER

Xeltis

Endogenous Tissue Restoration (ETR)

Valve after bioabsorption

 Synthetic matrix made of novel bioabsorbable supramolecular polymers using electrospinning techniques

- Polymer leaflets mounted on nitinol self-expanding frame
- Regrowth of endogenous tissue coincident with bioabsorption of polymer implant
- Natural self-healing antiinflammatory leaflets

Columbia University Medical Center

Xeltis

Endogenous Tissue Restoration (ETR)

Aortic Valve

- Safety demonstrated in >50 sheep
- 96% device success
- 3 and 6 months FU complete
- Preliminary 12 months data available and encouraging
- Hemodynamic performance stable over time

Columbia University Medical Center

Novel AS Imaging Technology Bay Labs – Echo acquisition

Available hand-held POCUS devices

Prompts for BL echo acquisition

JAMA Cardiology 2018

POCUS = point-of-care ultrasound

Columbia University Medical Center

Novel AS Imaging Technology Bay Labs – Echo interpretation

Training: > 25,000 complete AS echo studies

Input: PLAX and PSAX shown to the pre-trained network

Output: network integrates responses and makes diagnosis of valvular heart disease, rheumatic vs. non-rheumatic, and estimates the severity of AS (when present)

olumbia University Iedical Center

TAVR Accessory Devices Aortic Valve Remodeling (1)

Leaflex AVRT

- Mechanical scoring blades fracture leaflet calcium and improve leaflet mobility
- 13 Fr catheter
- Non-occlusive (no PM)
- Can be used as (1) stand-alone,
 (2) bridge to TAVR/SAVR or
 (3) preparation for TAVR
 (heavily calcified valves)

Columbia University Medical Center

TAVR Accessory Devices *Aortic Valve Remodeling (2)* Lithoplasty for Aortic Leaflet Restoration

- Electro-hydraulic lithotripsy in a balloon; microsecond bubble expansion and collapse travels thru balloon and disrupts calcium
- Supra-vavular approach
- Procedural hemodynamic stability; no need for PM
- Trans-femoral access
- Preparation for TAVR preparation or stand-alone therapy

Olumbia University Iedical Center

TAVR Landscape - 2018 Key Messages

- The success of TAVR therapy has catalyzed a 'second wave' of clinical studies to explore the expansion of clinical indications (even beyond current surgery).
- There are many innovative TAVR-related technologies which are being actively explored!
- In the future, AS classification schemes and therapy trigger points will be redefined

olumbia University Iedical Center

European Heart Journal (2017) **00**, 1–9 doi:10.1093/eurheartj/ehx381

Staging classification of aortic stenosis based on the extent of cardiac damage

Philippe Généreux^{1,2,3}, Philippe Pibarot⁴, Björn Redfors^{1,5}, Michael J. Mack⁶, Raj R. Makkar⁷, Wael A. Jaber⁸, Lars G. Svensson⁸, Samir Kapadia⁸, E. Murat Tuzcu⁸, Vinod H. Thourani⁹, Vasilis Babaliaros⁹, Howard C. Herrmann¹⁰, Wilson Y. Szeto¹⁰, David J. Cohen¹¹, Brian R. Lindman¹², Thomas McAndrew¹, Maria C. Alu¹³,

	and a super state of the	A State of the second s			
Stages/Criteria	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
	No Cardiac Damage	LV Damage	LA or Mitral Damage	Pulmonary Vasculature or Tricuspid Damage	RV Damage
Echocardiogram		Increased LV Mass Index >115 g/m ² (Male) >95 g/m ² (Female)	Indexed left atrial volume >34mL/m ²	Systolic Pulmonary hypertension ≥60 mmhg	Moderate-Severe right ventricular dysfunction
		E/e' >14	Moderate-Severe mitral regurgitation	Moderate-Severe tricuspid regurgitation	
		LV Ejection Fraction <50%	Atrial Fibrillation		

European Heart Journal (2017) **00**, 1–9 doi:10.1093/eurheartj/ehx381 FASTTRACK CLINICAL RESEARCH

Staging classification of aortic stenosis based on the extent of cardiac damage

COLUMBIA UNIVERSITY MEDICAL CENTER

New Hypothesis: Ventricular, Valvular and Vascular Dynamics Drive Aortic Stenosis (and should influence treatment decisions)

tct2018

Courtesy of E. Edelman and colleagues

- NewYork-Presbyterian

MEDICAL CENTER

TAVR Landscape - 2018 Key Messages

 There are also many 'gaps' in TAVR knowledge which must be addressed (e.g. valve leaflet abnormalities, late TAVR SVD/durability, coronary access considerations, and optimal adjunctive pharmacotherapy).

Valve Leaflet Abnormalities

Severely reduced leaflet motion noted in 2 patients in the early part of the U.S. Portico IDE study

COLUMBIA UNIVERSITY

Valve Leaflet Abnormalities

Makkar, et al. NEJM 2015

COLUMBIA UNIVERSITY MEDICAL CENTER

All TAVR systems will certainly demonstrate evidence of valve degeneration during long-term (> 5 years) assessments, especially if echo criteria are applied in the definitions of durability!

Surgically explanted Sapien and CorveValve THVs

Coronary Angiography and Percutaneous Coronary Intervention After Transcatheter Aortic Valve Replacement

Matias B. Yudi, MBBS,^a Samin K. Sharma, MD,^a Gilbert H.L. Tang, MD, MSc, MBA,^b Annapoorna Kini, MD^a

COLUMBIA UNIVERSITY

MEDICAL CENTER

Yudi et al. JACC 2018; 71:1360-78

2018

TAVR Adjunct Pharmacology Customized Patient-Based Therapy

BEFORE	DURING	AFTER	
Acetylsalicylic acid (ASA)	<section-header><text><text><text><text></text></text></text></text></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	

Columbia University Medical Center

TAVR Landscape - 2018 Key Messages

 There are also many 'gaps' in TAVR knowledge which must be addressed (e.g. valve leaflet abnormalities, late TAVR SVD/durability, coronary access considerations, and optimal adjunctive pharmacotherapy).
 By all meaningful criteria, TAVR has been a BREAKTHROUGH Technology!

olumbia University iedical Center

Celebration of 50th Anniversary of AS Natural History Manuscript

Aortic Stenosis

By JOHN ROSS, JR., M.D. AND EUGENE BRAUNWALD, M.D.

THE ADVENT of corrective operations for various forms of heart disease has placed increasing emphasis upon the need for accurate information concerning the natural history of patients with potentially correctible lesions. An understanding of the natural course assumes particular importance in the case of aortic stenosis because of the significant incidence of sudden death associated with this disease and the grave prognosis that appears to accompany the onset of certain symptoms,

From the Cardiology Branch, National Heart Intitute, Berhesola, Maryland.

Supplement V to Circulation, Vols. XXXVII and XXXVIII, July 1968

patients with isolated valvular aortic stenosis of rheumatic etiology and patients without a history of rheumatic fever who have isolated calcific aortic stenosis; many of the latter patients are now considered to have developed calcification and stenosis of a congenitally bicuspid valve.¹ The review will focus primarily

Ct2018 Ross and Braunwald, Circulation 1968;38:V-61

- NewYork-Presbyterian

COLUMBIA UNIVERSITY MEDICAL CENTER

Celebration of 50th Anniversary of AS Natural History Manuscript

tct2018 Ross and Braunwald, Circulation 1968;38:V-61

The Patients are Simply AMAZING!

Patient #1

92 yo man with critical AS... TAVI at CUMC on 2/8/06... Playing golf in Palm Springs on 3/8/06!!!

Columbia University Medical Center

It's is All About the Patients!

Remember, your patients are the point-of-care!!!

Columbia University Medical Center