

Spotlight Session Future of TMVR: The Next Generation of TMVR Beyond the MitraClip

Eberhard Grube, MD, FACC, FSCAI University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA

Eberhard Grube, MD

Physician Name	Company/Re	elationship
Speaker Bureau/Advisory	y Board:	Medtronic: C, SB, AB, OF LivaNova: C, SB, AB Highlife: AB, SB Boston Scientific: C, SB, AB Millipede: SB, C Pipeline: SB,C
Equity Interest:		InSeal Medical: E, AB, Cardiovalve: E, SB, Shockwave: E, AB Valve Medical: E, AB Mitra/Trialign E, AB, SB Ancora: e, AB, SB Imperative Medical: AB, E, SB
Key G – Grant and or Research Support E – Equi	ity Interests S – Salary, AB – A	dvisory Board hts

C – Consulting fees, Honoraria R – Royalty Income I – Intellectual Property Rights SB – Speaker's Bureau O – Ownership OF – Other Financial Benefits

Mitral Interventions

Background

Mitral Regurgitation in the U.S. Disease Prevalence

MR disease prevalence data are "deceptive". Most patients with 1^{ry} MR are better served with definitive surgical repair and patients with 2^{ry} MR are often best treated with "optimal" or guideline-directed medical therapy!

The true MR population who would be justifiable candidates for interventional therapies is UNKNOWN!

Treatment Options for MR 2017

- Treatment options for high risk patients are limited and associated with poor outcomes compared to surgery
- Transcatheter therapies are needed for this large group of patients

	Primary MR		Secondary MR	
	Low Surgical Risk	High Surgical Risk	Low Surgical Risk	High Surgical Risk
Surgical Repair	\checkmark		\checkmark	
Surgical Replacement	\checkmark		\checkmark	
Medical Therapy			\checkmark	\checkmark
MitraClip		\checkmark		\checkmark

A Toolbox of Treatment Options

Multiple approaches are required to treat this complex and heterogeneous disease

MitraClip and TMVR Challenges and Failures

Hammerl H Journal für Kardiologie 2004; 11 (4): 176-177 ©

Mitral Repair Devices in Use

>60,000

Severe FMR – Med Rx vs. MitraClip MitraFR and COAPT

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Percutaneous Repair or Medical Tr for Secondary Mitral Regurgita

J.-F. Obadia, D. Messika-Zeitoun, G. Leurent, B. lung, G. Bonn T. Lefèvre, C. Piot, F. Rouleau, D. Carrié, M. Nejjari, P. Ohlman C. Saint Etienne, E. Teiger, L. Leroux, N. Karam, N. Michel, M. G J.-N. Trochu, B. Cormier, X. Armoiry, F. Boutitie, D. Maucort-Bo G. Samson, P. Guerin, A. Vahanian, and N. Mewton, for the MITRA-I

P.N. Trochu, B. Commer, K. Armeny, F. Bountle, D. Maucort-Boulds Samson, P. Guern, A. Vahanian, and N. Mewton, for the MITBA-F.

Sam Same D Dage L Group R Louis K Model (G.G.M.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Mitral-Valve Repair in Patients with Heart Failure

G.W. Stone, J.A. Lindenfeld, W.T. Abraham, S. Kar, D.S. Lim, J.M. Mishell,
B. Whisenant, P.A. Grayburn, M. Rinaldi, S.R. Kapadia, V. Rajagopal,
I.J. Sarembock, A. Brieke, S.O. Marx, D.J. Cohen, N.J. Weissman,
and M.J. Mack, for the COAPT Investigators*

1] Strembord, A. Brein, S.O. Marx, D.J. Cohen, N.J. Weissman and M.J. Mack. for the COAPT Investigators*

Is COAPT a Rising Tide That Floats ALL Boats? OR... Will It Float Only One Boat?

Mitra-FR vs COAPT Words of Caution

With TMVR at the horizon, in patients suitable for TMVR, only clips with perfect results should be left (applies also for the first clip of a procedure!)

Mitra-FR vs COAPT Words of Caution

- Clip catheter too unflexible, length of catheter toO static, therefore localization of transseptal puncture (too) is crucial
- Clip arms too small
- Clip arms do not work independently
- Once the clip is placed, no other options than surgery remains

Mitra-FR vs COAPT What did we learn?

- 1. MitraClip is safe and MitraClip reduces MR in this patient population
- 2. Patient selection and timing of procedure is key
- 3. COAPT confirms synergy of drug and device therapies in HF patients
- 4. Competence centers are needed to ensure proper implantation expertise and appropriate HF treatment before, during and after the procedure
- The results of COAPT are not easily "generaliseable" to the whole spectrum of MR therapies.

STS/ACC MitraClip TVT Registry

STS/ACC MitraClip TVT Registry 2,952 pts enrolled thru Sept, 2015; linked records to CMS claims data 40% with post-procedural 100% Grade 4 $MR \geq 2$ Grade 3 80% SLDA, 1.5% Grade 2 60% Grade 0/1 In-hospital mortality = 2.7% 40% 85.9% discharged nome 20% Median LOS, 2 days 0% postimplant Baseline (1, 5 days) Acute procedure success = 91.8%

Post-Procedural MR and Survival TVT Registry for MitraClip

P.Soraija

Mitra-FR vs COAPT What do we still need to know?

- How do we better implement heart teams, surgeons and cardiologists together
- How do we more precisley standardize the procedure (assess EROA , 3D imaging, # of clips etc)
- What are effects based on post-clip gradient and MVA?
- What is *"*optimal medical management"?
- Does this work (or not work) for other MV repair therapies?

The "Mitral World" after COAPT

- Increased optimism with MV therapies
- Trial recruitement for other devices will become problematc
- If the Clip becomes standard of care it might become comparator for other mitral innovations
- HF specialists are now more actively involved
- Safety of the Clip procedure will be difficult to match
- The results of the COAPT trial are difficult to replicate in all patients. More devices are needed.
- Surgery remains an option for DMR in younger patients and more complex anatomies....

Device Parade MV Replacement (TMVR)

Transcatheter MVR Potential advantages (replacement vs. repair)

- Applicable to primary and secondary MR, regardless of anatomy or pathology
- Ease of implantation
- Reliable elimination of MR
- Greater durability

RATIONALE TMVR is etiology agnostic, with FMR being the larger 70unmet need 60-**Evidence shows high** 50recurrent MR with Patients (%) 40-2 surgical repair for 30ischemic MR 20patients 10-

TMV repair that leaves residual MR has a high mortality penalty

EVIDENCE

- 1. Saibal Kar, ESC 2016
- 2. Thourani, TCT

RATIONALE

EVIDENCE

TMVR is etiology agnostic, with FMR being the larger unmet need

Evidence shows high

2 recurrent MR with surgical repair for ischemic MR patients

TMV repair that leaves residual MR has a high mortality penalty

The Challenges....

Technical and Anatomical Challenges

- High variability and instability of the anatomy
 - No defined structure for anchoring (like calcified annulus in TAVI)
 - Dilatation of the annulus creates big range of sizes
- Complex apparatus with multi intradependencies:
 - LVOT, SAM, Tethering, Continuous dilatation, complex flow and motion patterns through the cardiac cycle.

• Delivery challenges:

- Trans-apical thin and dilated ventricles
- Retrograde size, navigation, LV interaction
- Trans septal size, navigation
- Two pathologies: DMR and FMR

Design Targets

User friendly

Transcatheter mitral valve replacement: First-in-Human timeline

TMVR: Current Human Experience

Technologies		Reported Human Experience
ABT Tendyne	• 9	100+
MDT Intrepid	Topoget	70+
EW M3 Sapien		10+
EW CardiAQ	And the second	23+
Neovasc Tiara	-	52+
Caisson		17+
HighLife	Received	15+
Cardiovalve		5+

TCMV replacement devices

Mitral Interventions Tendyne TMVR

Mitral Interventions Tendyne TMVR

- Tri-leaflet porcine pericardial valve
- Self-expanding nitinol double frame
 - D-shaped outer frame, anterior cuff
- Large valve size matrix
 - Single inner valve size
 - Multiple outer frame sizes
- Large Effective Orifice Area (>3.0cm²)
- Transapical access, valve tethered to apex
 - Adjustable tension provides valve stability
- Apical Pad assists in access closure
- Valve fully retrievable and repositionable

Mitral Interventions Tendyne TMVR

Image courtesy of D- Muller, St Vincent's Hospit

Mitral Interventions Tendyne TMVR Global Experience

158 patients

- 135 treated in Expanded Feasibility/CE Mark Study
- 23 additional under Compassionate Use

EFS Patient Distribution

Tendyne CE Mark Study: MR Reduction

99.0% ≥ 3+ MR at baseline to 98.8% none/trace at 30 days No patients with more than mild (1+) MR at 30 days

SUMMIT

SUMMIT Trial Design

The Tendyne MAC Study

- Objective
 - To evaluate the use of Tendyne TMVR in the treatment of mitral regurgitation in patients with severe mitral annular calcification (MAC)
- Type/Design
 - Prospective, single-arm, multi-center
 - Up to 10 sites, up to 30 subjects
- Principal Investigators
 - Paul Sorajja, MD
 - Vinod Thourani, MD
- Endpoints
 - Primary Safety Freedom from device or procedurerelated SAEs at 30 days
 - Other Technical, Patient, Device (MVARC-defined)

CS006-P MAC Feasibility Study Feasibility study of the Tendyne Mittal Valve System in Mittal Annular Calcification

IDE Number	G140240	
Version Number	Version A	
Date	25APR2018	
National Primary Investigator (Interventional Cardiologist)	Paul Sorajja, M.D., FACC, FAHA, FSCAI Director, Center for Valve and Structural Heart Disease Minneapolis-Heart Institute - Abbott Northwestern Hospita	
National Primary Investigator (Cardiothoracic Surgeon)	Viaod Thourani, M.D., FACS, FACC Professor of Surgery Chair, Department of Cardiac Surgery MedStar Heart and Vascular Institute Washington Hospital Center	
Study Type	Prospective, single-arm, unificenter feasibility clinic study of the Tendyne Mitral Valve System	
Sponsor	Tendyne Holdings, Inc. (a subsidiary of Abbott Vascula Inc.) 177 County Road B East St. Paul, MN 55117	
Mitral Interventions Intrepid TMVR

Mitral Interventions Intrepid TMVR

Case Example

Intrepid TMVR Global Feasibility and U.S. EFS Studies Consecutive Cases - Mortality (n=50)

Study Aim

• To determine the feasibility of TMVR with the Intrepid valve

Analysis Cohort

 The initial 50 consecutively enrolled patients in the pilot study (06 May 2015 to 21 July 2017)

Clinical Endpoints

- MVARC criteria
- An independent physician committee reviewed adverse clinical events, including mortality, stroke, myocardial infarction, bleeding, re-hospitalization, and reoperation

Participating Sites

1-Year Survival

Mitral Regurgitation Severity

Mitral Regurgitation Severity

Mild MR Paravalvular: 3 (7.1%) Transvalvular: 8 (19.0%)

All patients with mild or no MR in follow-up

MDT APOLLO Trial Overview

Principal Investigators: David Adams and Martin B Leon Study Chair: Michael Mack

Evaluate safety and efficacy of Medtronic Intrepid[™] TMVR System in patients with symptomatic mitral regurgitation

Mitral Interventions Highlife TMVR

2-step procedure

transapical

Early feasibility experience

Demographics	
Age (years), avg. (range)	69 (50-79)
Male (%)	80
Functional MR (%)	73
Previous cardiac surgery (%)	33
LVEF (%), avg. (range)	38 (27-54)
Annular diameter (mm), range	32-52

HighLife clinical outcomes

	30 Days (n=14)	6 Months (n=7)	1 Year (n=5)
Death *	3	0	1
Stroke	0	0	0
Myocardial Infarction	0	0	0
LVOT obstruction	1	0	0
Paravalvular regurgitation > grade I	0	0	0
Mean Transvalvular gradient > 5 mmHg**	1	0	0

* Patient selection (1 severe LV dysfunction, 1 LVOT obstruction from small left ventricular cavity) and technical learning curve (1 chordal entanglement)
** Thrombosis related to subtherapeutic coumadin

First-in-Human Transseptal Highlife

- 79 year old male
- Severe functional mitral regurgitation
- Severe left ventricular dysfunction 25-30%
- Multiple recent admissions for CHF
- Moderate COPD
- Mild renal dysfunction

Mitral Interventions Cardiovalve TMVR

Cardiovalve TMVR: 1 valve, 2 frames, 3 steps

Cardiovalve follows surgical design, adapted for transcatheter use

- Low presence in the ventricle, no protruding atrial component
- Robust frame and classic leaflet design for durability
- 3 sizes to fit all anatomies
- Proprietary anchoring and sealing element

The **Surgical gold-standard** Edwards Perimount Magna[™]

The **Transcatheter solution** Cardiovalve[™]

Promising First 5 Cases

	Case 1	Case 2	Case 3	Case 4	Case 5
MR	Νο	Νο	Νο	No	No
PVL	Νο	Trace	Trace	Νο	Trace
LVOTo	No	No	No	No	No
Gradie nts	5 mmHg	6 mmHg	2 mmHg	6 mmHg	3 mmHg
Hemod y.	Normal	Normal	Normal	Normal	Normal
DS time	30 min	23 min	40 min	30 min	21 min
Depl. time	13 min	15 min	25 min	17 min	14 min

AHEAD – Study Design

European Feasibility Study of High Surgical Risk Patients with Severe Mitral Regurgitation treated with the Cardiovalve Transfemoral Mitral Valve System (AHEAD Study)

Sites	Up to 10 sites (Italy , Swiss , Germany, France)
Study Design	Prospective, multi-center, single arm pilot clinical study
Enrollment	A total of 30 subjects will be enrolled in this pilot study
Target patients	Symptomatic subjects (NYHA Class ≥ II-IV) with severe mitral regurgitation requiring mitral valve replacement who are at high risk for open chest surgery according to the Heart Team decision

AHEAD

University Hospital Zurich First AHEAD study patient

Study Enrollment 1 year duration

Confidential

Mitral Interventions CardiAQ TMVR

CardiAQ-Edwards Transcatheter Mitral Valve Replacement System

Early learnings led to program improvements

- Improved patient selection
- Device iterations: deflectable delivery system
- Procedure optimization: pre-2016 majority TA → now all TS with optimized procedure

CardiAQ-Edwards Transcatheter Mitral Valve Replacement System

Program Status

- Recent clinical experience is encouraging
- Continued focus on transseptal delivery
- Increased enrollment cadence in US Early Feasibility Study
- Longest survivor >3 years
- Ongoing progress in product and procedural optimization
- Future:
 - Valve enhancements
 - Lower profile delivery system
 - Improved steerability

Mitral Interventions Caisson TMVR

TMVR Clinical Design Features

Endovascular Transeptal Approach

Venous Access

- Dual Stage Implant: Anchor and Valve
- Designed for FMR and DMR
- Atrially-Biased valve
- Minimizes LVOT Obstruction
- SAM Management Feature
- Traps A2 against valve cuff to maintain NeoLVOT

Repositionable / Retrievable

- The ability to test the performance of the implant and judge the need to adjust, deploy or remove
- Both Anchor and Valve are repositionable and fully retrievable

Implant: Anchoring and Sealing

Anchor

- Nitinol Self-Expanding Frame
- Covered with Polyester and ePTFE
- 4 Sub-annular Anchoring Feet
- 3 Atrial Holding Loops

- Valve
- Nitinol Self-Expanding
- D-shaped Outer Stent
- Porcine Pericardium
- 3 Leaflet Circular Valve, EOA>3.0cm²

Device Design Improvements

MAL Langsons

Patient Disposition

Enrollment

Implantation

Caisson Transcatheter Mitral Valve Replacement

Study Status

- Enrollment has successfully concluded for PRELUDE and initiated for the INTERLUDE US study
- Multiple implant sizes available

Implant Performance

 Follow-up results show positive acute valve performance which is maintained over time • Patient outcomes are encouraging

Procedural Performance

- New procedural methods and device improvements have enhanced operator experience and confidence
- Success at multiple centers demonstrates procedural repeatability

Mitral Interventions Tiara TMVR

Mitral Interventions *Tiara TMVR*

- Fits anatomical shape of native valve
- Quick and repeatable transapical implantation procedure and well-established, efficient preparation procedure
- 35 mm and 40 mm size in clinical use and CE mark study
- Trans-septal delivery system under development
- Device and delivery systems covered by multiple patent applications and issued patents

Mitral Interventions *Tiara TMVR*

- 58 patients treated to date: (Belgium, Canada, Germany, Israel, Italy, Switzerland, UK and US)
 - 20 in TIARA-I
 - 16 in TIARA-II
 - 22 under Compassionate Use (longest follow-up 4 years)
- Procedure outcomes very encouraging with average implantation procedure time of approximately 20 minutes (Shortest implantation procedure time to-date: 8 minutes)
- Successfully treated patients with all types of Mitral Valve pathologies, and preexisting prosthetic aortic valves (both mechanical and bioprosthetic) and prior surgical mitral valve repair

	Since 2014	2017	TIARA-II
TREATED	58	21	16
30 Day SURVIVAL RATE	90% (52/58)	95% (20/21)	94% (15/16)

Mitral Interventions Edwards Sapien M3 Valve and M3 Dock

Mitral Interventions Edwards Sapien M3 Valve and M3 Dock

SAPIEN M3 System All Participating Centers

Center	Investigator (MD)
St. Paul's Hospital Vancouver, BC	John Webb
Cedars-Sinai Medical Center Los Angeles, CA	Raj Makkar
Intermountain Medical Center Salt Lake City, UT	Brian Whisenant
Northshore University Health System ^{Evanston, IL}	Mayra Guerrero
Mayo Clinic Rochester, MN	Charanjit Rihal

SAPIEN M3 System Procedural Outcomes

Case	Baseline LVEF	Procedur e Length	Procedural MR Grade		Procedural Adverse	30 day	30 day Clinical
π	(%)	(hrs)	Pre	Post	Post Event	Status	
1	60	4	Severe	Trace	None	Severe ⁽¹⁾	Alive
2	33	7.3 ⁽²⁾	Moderate- Severe	Mild	Chordal Rupture	Trace	Alive
3	35	2.5	Severe	Mild	None	None	Alive
4	30	2	Moderate- Severe	None	None	None	Alive
5	32	2.1	Severe	None	None	None	Alive
6	42	1.8	Severe	Trace	None	Trace	Alive
7	32	3.7	Severe	Mild	None	Trace	Alive
8	30	3.8	Severe	Mild	None	Trace	Alive
9	41	2.5	Moderate- Severe	None	None	None	Alive
10	40	1.3	Moderate- Severe	None	None	Mild	Alive

1PVL was closed with a plug which reduced post-30 day MR to 2+

²Chordal rupture during dock deployment resulted in severe PVL; closed intra-procedurally with plugx2; stroke (POD 02)

SAPIEN M3 System First 10 Cases - Data Summary

	N=10	Clinical Outcomes at 30	N=1
Technical Success*	9	days*	0
Alive 10 All-cause Mor		All-cause Mortality	0
Successful	10	All Stroke	1 ⁽¹⁾
access/Delivery		Rehospitalization	0
Deployment	eployment 10 (Device/P		U
Freedom from	Q (1)	Hemolysis	0
Reintervention	5	LVOT Obstruction	0

There was no Conversion to Surgery, Device Embolization, Device Migration or Implantation of more than one valve observed.

*Site reported

¹Case #2: Chordal rupture during dock deployment resulted in severe PVL; closed intra-procedurally with plugx2; stroke (POD 02)

What's the clinical reality?

Many screening failures (clinical and anatomic factors)

Imaging knowledge and skills are critical

What's the clinical reality?

Many screen failures (clinical and anatomic factors)

Imaging knowledge and skills are critical

Poor left ventricular function = poor outcomes

Assessment of LVOT obstruction
What's the clinical reality?

What's the clinical reality?

Large delivery profiles (>30F)

Mitral regurgitation is usually eliminated

Heterogeneous clinical outcomes across device platforms

Optimal antiplatelet/antithrombotic therapy uncertain

Lingering questions . . .

- What is the addressable patient population for TCMV replacement? Primary vs. secondary MR? Risk profile?
- How can we overcome the challenges in patient and device selection – futile versus high risk? Appropriate imaging for anatomical screening and procedural guidance?
- What skill sets are required to perform transcatheter mitral valve interventions? Training requirements? Role of the Heart Team?

Lingering questions . . .

- What type of clinical trial designs for regulatory approval? What will be the impact of the COAPT or RESHAPE-HF-2 trials on the approval process of other TCMV therapies? What can we learn from these ongoing trials?
- What should be the primary safety and efficacy endpoints?
- How do we evaluate treatment success (survival, symptoms, MR reduction, LV remodeling, hospitalization, progression to heart failure/transplant) ?

Lingering questions . . .

- Should referral patterns and patient selection criteria be different for centers of excellence? By what standards do we define centers of excellence (volume, benchmark measures)?
- Will the future market be dominated by repair or replacement? Combination repair techniques?
- Predictions about adoption rates? Reimbursement strategies?

Thank you very much for your attention!

Thank you for your kind attention!